Previous |  Up |  Next

Article

Title: Estimation and bimodality testing in the cusp model (English)
Author: Voříšek, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 798-814
Summary lang: English
.
Category: math
.
Summary: The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings. (English)
Keyword: multimodal distributions
Keyword: cusp model
Keyword: bimodality test
Keyword: reduced maximum likelihood estimation
MSC: 62F03
idZBL: Zbl 06987035
idMR: MR3863257
DOI: 10.14736/kyb-2018-4-0798
.
Date available: 2018-10-30T14:53:04Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147425
.
Reference: [1] Arnold, V. I.: Catastrophe Theory..Springer-Verlag, Berlin 1992. MR 1178935, 10.1007/978-3-642-58124-3
Reference: [2] Barunik, J., Kukačka, J.: Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility..Quantitative Finance 15 (2015), 959-973. MR 3344222, 10.1080/14697688.2014.950319
Reference: [3] Barunik, J., Vošvrda, M.: Can a stochastic cusp catastrophe model explain stock market crashes?.J. Economic Dynamics Control 33 (2009), 1824-1836. MR 2569497, 10.1016/j.jedc.2009.04.004
Reference: [4] Cobb, L.: Stochastic catastrophe models and multimodal distributions..Behavioral Sci. 23 (1978), 360-374. MR 0517512, 10.1002/bs.3830230407
Reference: [5] Cobb, L., Watson, B.: Statistical catastrophe theory: An overview..Math. Modell. 1 (1980), 311-317. MR 0651732, 10.1016/0270-0255(80)90041-x
Reference: [6] Cobb, L.: Parameter estimation for the cusp catastrophe model..Behavioral Sci. 26 (1981), 75-78. 10.1002/bs.3830260107
Reference: [7] Cobb, L., Koppstein, P., Chen, N. H.: Estimation and moment recursion relations for multimodal distributions of the exponential family..J. Amer. Statist. Assoc. 78 (1983), 124-130. MR 0696856, 10.2307/2287118
Reference: [8] Creedy, J., Lye, J., Martin, V.: A non-linear model of the real US/UK exchange rate..Econom. Modell. 11 (1996), 669-686. 10.1002/(sici)1099-1255(199611)11:6<669::aid-jae415>3.0.co;2-5
Reference: [9] Diks, C., Wang, J.: Can a stochastic cusp catastrophe model explain housing market crashes?.J. Econom. Dynamics Control 69 (2016), 68-88. 10.1016/j.jedc.2016.05.008
Reference: [10] Fernandes, M.: Financial crashes as endogenous jumps: estimation, testing and forecasting..J. Econom. Dynamics Control 30 (2006), 111-141. MR 2192107, 10.1016/j.jedc.2004.11.005
Reference: [11] Grasman, R. P. P. P., Maas, H. L. J. van der, Wagenmakers, E. J.: Fitting the cusp catastrophe in R: A cusp package primer..J. Statist. Software 32 (2009), 1-28. 10.18637/jss.v032.i08
Reference: [12] Hartigan, J. A., Hartigan, P. M.: The dip test of unimodality..Ann. Statist. 13 (1985), 70-84. MR 0773153, 10.1214/aos/1176346577
Reference: [13] Kodde, D. A., Palm, F. C.: Wald criteria for jointly testing equality and inequality restrictions..Econometrica 54 (1986), 1243-1248. MR 0859464, 10.2307/1912331
Reference: [14] Koh, S. K., Fong, W. M., Chan, F.: A Cardans discriminant approach to predicting currency crashes..J. Int. Money Finance 26 (2007), 131-148. 10.1016/j.jimonfin.2006.08.001
Reference: [15] Lehman, E. L., Romano, J. P.: Testing Statistical Hypotheses. Third edition..Springer-Verlag, New York 2005. MR 2135927, 10.1007/0-387-27605-x
Reference: [16] Matz, A. W.: Maximum likelihood parameter estimation for the quartic exponential distribution..Technometrics 20 (1978), 475-484. 10.1080/00401706.1978.10489702
Reference: [17] Thom, R.: Structural Stability and Morpohogenesis..W. A. Benjamin, New York 1975. MR 0488156
.

Files

Files Size Format View
Kybernetika_54-2018-4_10.pdf 4.567Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo