Previous |  Up |  Next


Self-similar group; Cantor set; $p$-adic integers.
In this paper, we first give several properties with respect to subgroups of self-similar groups in the sense of iterated function system (IFS). We then prove that some subgroups of $p$-adic numbers $\mathbb{Q}_{p}$ are strong self-similar in the sense of IFS.
[1] Barnsley, M. F.: Fractals Everywhere. 1988, Academic Press, Boston, MR 0977274
[2] Demir, B., Saltan, M.: A self-similar group in the sense of iterated function system. Far East J. Math. Sci., 60, 1, 2012, 83-99, MR 2953920
[3] Falconer, K. J.: Fractal Geometry. 2003, Mathematical Foundations and Application, John Wiley, MR 2118797
[4] Gouvêa, F. Q.: $p$-adic Numbers. 1997, Springer-Verlag, Berlin, MR 1488696
[5] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J., 30, 5, 1981, 713-747, DOI 10.1512/iumj.1981.30.30055 | MR 0625600 | Zbl 0598.28011
[6] Mandelbrot, B. B.: The Fractal Geometry of Nature. 1983, W. H. Freeman and Company, New York, MR 0665254
[7] Robert, A. M.: A Course in $p$-adic Analysis. 2000, Springer, MR 1760253 | Zbl 0947.11035
[8] Saltan, M., Demir, B.: Self-similar groups in the sense of an IFS and their properties. J. Math. Anal. Appl., 408, 2, 2013, 694-704, DOI 10.1016/j.jmaa.2013.06.040 | MR 3085063
[9] Saltan, M., Demir, B.: An iterated function system for the closure of the adding machine group. Fractals, 23, 3, 2015, DOI: 10.1142/S0218348X15500334. DOI 10.1142/S0218348X15500334 | MR 3375691
[10] Schikhof, W. H.: Ultrametric Calculus an Introduction to $p$-adic Calculus. 1984, Cambridge University Press, New York, MR 0791759
Partner of
EuDML logo