[1] Adam, L., Branda, M.: 
Nonlinear chance constrained problems: Optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170 (2016), 2, 419-436. 
DOI 10.1007/s10957-016-0943-9 | 
MR 3527703[2] Beck, A. T., Gomes, W. J. S., Lopez, R. H., Miguel, L. F. F.: 
A comparison between robust and risk-based optimization under uncertainty. Struct. Multidisciplin. Optim. 52 (2015), 3, 479-492. 
DOI 10.1007/s00158-015-1253-9 | 
MR 3399194[6] Campi, M. C., Garatti, S.: 
A Sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148 (2011), 257-280. 
DOI 10.1007/s10957-010-9754-6 | 
MR 2780563[7] Carè, A., Garatti, S., Campi, M. C.: 
Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25 (2015), 4, 2061-2080. 
DOI 10.1137/130928546 | 
MR 3413595[8] Dupačová, J.: 
Stochastic geometric programming with an application. Kybernetika 46 (2010), 3, 374-386. 
MR 2676074[9] Gandomi, A. H., Yang, X.-S., Alavi, A. H.: 
Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engrg. Comput. 29 (2013), 1, 17-35. 
DOI 10.1007/s00366-011-0241-y[10] Grant, M., Boyd, S.: 
Graph implementations for nonsmooth convex programs. In: Recent Advances in Learning and Control (V. Blondel, S. Boyd and H. Kimura, eds.), Springer-Verlag Limited, Berlin 2008, pp. 95-110. 
DOI 10.1007/978-1-84800-155-8_7 | 
MR 2409077[11] Haslinger, J., Mäkinen, R. A. E.: 
Introduction to Shape Optimization: Theory, Approximation, and Computation (Advances in Design and Control). SIAM, 2003. 
DOI 10.1137/1.9780898718690 | 
MR 1969772[12] Laníková, I., Štěpánek, P., Šimůnek, P.: 
Optimized Design of concrete structures considering environmental aspects. Advances Structural Engrg. 17 (2014), 4, 495-511. 
DOI 10.1260/1369-4332.17.4.495[13] Lepš, M., Šejnoha, M.: 
New approach to optimization of reinforced concrete beams. Computers Structures 81 (2003), 1, 1957-1966. 
DOI 10.1016/s0045-7949(03)00215-3[14] Luedtke, J., Ahmed, S., Nemhauser, G. L.: 
An integer programming approach for linear programs with probabilistic constraints. Math. Programm. Ser. A 122 (2010), 247-272. 
DOI 10.1007/s10107-008-0247-4 | 
MR 2546332[15] Marek, P., Brozzetti, J., Gustar, M.: 
Probabilistic Assessment of Structures using Monte Carlo Simulation. TeReCo, Praha 2001. 
DOI 10.1115/1.1451167[17] Oberg, E., Jones, F. D., Ryffel, H. H.: Machinery's Handbook Guide. 29th edition. Industrial Press, 2012.
[18] Pagnoncelli, B. K., Ahmed, S., Shapiro, A.: 
Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 142 (2009), 399-416. 
DOI 10.1007/s10957-009-9523-6 | 
MR 2525799[19] Rozvany, G. I. N., (eds.), T. Lewiński: 
CISM Courses and Lectures: Topology Optimization in Structural and Continuum Mechanics. Springer-Verlag, Wien 2014. 
MR 3183768[20] Ruszczynski, A., (eds.), A. Shapiro: 
Handbooks in Operations Research and Management Science: Stochastic Programming. Elsevier, Amsterdam 2003. 
MR 2051792[21] Šabartová, Z., Popela, P.: Beam design optimization model with FEM based constraints. Mendel J. Ser. 1 (2012), 422-427.
[22] Smith, I. M., Griffiths, D. V.: 
Programming the Finite Element Method. Fourth edition. John Wiley and Sons, New York 2004. 
MR 0934925[23] Young, W. C., Budynas, R. G., Sadegh, A. M.: 
Roark's Formulas for Stress and Strain. Seventh edition. McGraw-Hill Education, 2002. 
MR 0112352[24] Žampachová, E., Popela, P., Mrázek, M.: 
Optimum beam design via stochastic programming. Kybernetika 46 (2010), 3, 571-582. 
MR 2676092[25] Zhuang, X., Pan, R.: 
A sequential sampling strategy to improve reliability-based design optimization with implicit constraint functions. J. Mechan. Design 134 (2012), 2, Article number 021002. 
DOI 10.1115/1.4005597