Previous |  Up |  Next

Article

Title: Multivariate stochastic dominance for multivariate normal distribution (English)
Author: Petrová, Barbora
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 6
Year: 2018
Pages: 1264-1283
Summary lang: English
.
Category: math
.
Summary: Stochastic dominance is widely used in comparing two risks represented by random variables or random vectors. There are general approaches, based on knowledge of distributions, which are dedicated to identify stochastic dominance. These methods can be often simplified for specific distribution. This is the case of univariate normal distribution, for which the stochastic dominance rules have a very simple form. It is however not straightforward if these rules are also valid for multivariate normal distribution. We propose the stochastic dominance rules for multivariate normal distribution and provide a rigorous proof. In a computational experiment we employ these rules to test its efficiency comparing to other methods of stochastic dominance detection. (English)
Keyword: multivariate stochastic dominance
Keyword: multivariate normal distribution
Keyword: stochastic dominance rules
MSC: 91B16
MSC: 91B28
idZBL: Zbl 07031773
idMR: MR3902633
DOI: 10.14736/kyb-2018-6-1264
.
Date available: 2019-02-18T14:55:10Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147609
.
Reference: [1] Aitchison, J.: The Statistical Analysis of Compositional Data..The Blackburn Press 2003. MR 0865647
Reference: [2] Anděl, J.: Základy matematické statistiky..Matfyzpress 2005.
Reference: [3] Armbruster, B., Luedtke, J.: Models and formulations for multivariate dominance-constrained stochastic programs..IIE Transactions 47 (2015), 1-14. 10.1080/0740817x.2014.889336
Reference: [4] Dentcheva, D., Ruszczýnski, A.: Optimization with multivariate stochastic dominance constraints..Math. Programming 117 (2009), 111-127. MR 2421301, 10.1007/s10107-007-0165-x
Reference: [5] Holm, S.: A simple sequentially rejective multiple test procedure..Scand. J. Statist. 6 (1979), 65-70. MR 0538597
Reference: [6] Huang, C. C., Vertinsky, I., Ziemba, W. T.: On multiperiod stochastic dominance..J. Financ. Quantitat. Anal. 13 (1978), 1-13. 10.2307/2330516
Reference: [7] Kopa, M., Petrová, B.: Strong and weak multivariate first-order stochastic dominance..SSRN Electron. J. xx (2017), xxx-xxx. 10.2139/ssrn.3144058
Reference: [8] Levhari, D., Paroush, J., Peleg, B.: Efficiency analysis for multivariate distributions..Rev. Econom. Stud. 42 (1975), 87-91. 10.2307/2296822
Reference: [9] Levy, H.: Stochastic dominance, efficiency criteria and efficient portfolios: the multiperiod case..Amer. Econom. Rev. 63 (1973), 986-994. 10.1142/9789814417358_0018
Reference: [10] Levy, H.: Stochastic Dominance: Investment Decision Making under Uncertainty..Springer 2006. MR 2239375
Reference: [11] Levy, H.: Stochastic Dominance (Investment Decision Making Under Uncertainty)..Springer 2016. MR 3525602
Reference: [12] Levy, H., Paroush, J.: Multi-period stochastic dominance..J. Financ. Quantitat. Anal. 21 (1974), 428-435. MR 0439069, 10.1287/mnsc.21.4.428
Reference: [13] Műller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks..Wiley 2002. MR 1889865
Reference: [14] Ortobelli, S.: The classification of parametric choices under uncertainty: analysis of the portfolio choice problem..Theory and Decision 51 (2001), 297-327. MR 1944466, 10.1023/a:1015511211848
Reference: [15] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic stochastic dominance rules for sums of iid random variables..J. Comput. Appl. Math. 300 (2016), 432-448. MR 3460310, 10.1016/j.cam.2015.12.017
Reference: [16] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic multivariate dominance: A financial application..Methodol. Comput. Appl. Probab. 18 (2016), 1097-1115. MR 3564855, 10.1007/s11009-016-9502-y
Reference: [17] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and their Applications..Academic Press 1993. MR 1278322
Reference: [18] Tong, Y. L.: The Multivariate Normal Distribution..Springer Series in Statistics 1990. MR 1029032, 10.1007/978-1-4613-9655-0
.

Files

Files Size Format View
Kybernetika_54-2018-6_12.pdf 577.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo