Previous |  Up |  Next

Article

Title: Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae (English)
Author: Wang, Xiaoyuan
Author: Chu, Wenchang
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 99-111
Summary lang: English
.
Category: math
.
Summary: The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series. (English)
Keyword: Terminating $q$-series
Keyword: the $q$-derivative operator
Keyword: well-poised series
Keyword: balanced series
Keyword: Pfaff-Saalschüutz summation theorem
Keyword: Gasper's $q$-Karlsson-Minton formula
MSC: 05A30
MSC: 33C20
idZBL: Zbl 1412.33015
idMR: MR3898196
.
Date available: 2019-05-07T09:21:26Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147657
.
Reference: [1] Al-Salam, W.A., Verma, A.: On quadratic transformations of basic series.SIAM J. Math., 15, 1984, 414-420, MR 0731877, 10.1137/0515032
Reference: [2] Andrews, G.E.: On $q$-analogues of the Watson and Whipple summations.SIAM J. Math., 7, 3, 1976, 332-336, MR 0399529, 10.1137/0507026
Reference: [3] Andrews, G.E.: Connection coefficient problems and partitions.Proc. Sympos. Pure Math., 34, 1979, 1-24, MR 0525316
Reference: [4] Andrews, G.E.: Pfaff's method (II): diverse applications.J. Comp. and Appl. Math., 68, 1--2, 1996, 15-23, MR 1418748, 10.1016/0377-0427(95)00258-8
Reference: [5] Bailey, W.N.: Generalized Hypergeometric Series.1935, Cambridge University Press, Cambridge, MR 0185155
Reference: [6] Bailey, W.N.: A note on certain $q$-identities.Quart. J. Math. (Oxford), 12, 1941, 173-175, MR 0005964, 10.1093/qmath/os-12.1.173
Reference: [7] Bailey, W.N.: On the analogue of Dixon's theorem for bilateral basic hypergeometric series.Quart. J. Math. (Oxford), 1, 1950, 318-320, MR 0039852, 10.1093/qmath/1.1.318
Reference: [8] Bressoud, D.M.: Almost poised basic hypergeometric series.Proc. Indian Acad. Sci. Math. Sci., 97, 1-3, 1987, 61-66, MR 0983605
Reference: [9] Carlitz, L.: Some formulas of F.H. Jackson.Monatsh. Math., 73, 1969, 193-198, MR 0248035, 10.1007/BF01300534
Reference: [10] Carlitz, L.: Some $q$-expansion formulas.Glasnik Mat., 8, 28, 1973, 205-213, MR 0330842
Reference: [11] Chu, W.: Inversion techniques and combinatorial identities: Basic hypergeometric identities.Publ. Math. Debrecen, 44, 3-4, 1994, 301-320, MR 1291979
Reference: [12] Chu, W.: Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series.Compos. Math., 91, 2, 1994, 121-144, MR 1273645
Reference: [13] Chu, W.: Partial fractions and bilateral summations.J. Math. Phys., 35, 4, 1994, 2036-2042, MR 1267941, 10.1063/1.530536
Reference: [14] Chu, W.: Basic Almost-Poised Hypergeometric Series.135, 642, 1998, x+99 pp, Mem. Amer. Math. Soc., MR 1434989
Reference: [15] Chu, W.: Partial-fraction expansions and well-poised bilateral series.Acta Sci. Mat., 64, 1998, 495-513, MR 1666034
Reference: [16] Chu, W.: $q$-Derivative operators and basic hypergeometric series.Results Math., 49, 1-2, 2006, 25-44, MR 2264824
Reference: [17] Chu, W.: Abel's Method on summation by parts and Bilateral Well-Poised $_3\psi _3$-Series Identities.Difference Equations, Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München, Germany, July 2005), 2007, 752-761, World Scientific Publishers, MR 2451214
Reference: [18] Chu, W.: Divided differences and generalized Taylor series.Forum Math., 20, 6, 2008, 1097-1108, MR 2479292
Reference: [19] Chu, W.: Abel's method on summation by parts and balanced $q$-series identities.Appl. Anal. Discrete Math., 4, 2010, 54-65, MR 2654930, 10.2298/AADM1000006C
Reference: [20] Chu, W.: Elementary proofs for convolution identities of Abel and Hagen-Rothe.Electron. J. Combin., 17, 1, 2010, 24, MR 2644861
Reference: [21] Chu, W., Wang, C.: Bilateral inversions and terminating basic hypergeometric series identities.Discrete Math., 309, 12, 2009, 3888-3904, MR 2537383, 10.1016/j.disc.2008.11.002
Reference: [22] Gasper, G.: Summation formulas for basic hypergeometric series.SIAM J. Math. Anal., 12, 2, 1981, 196-200, MR 0605430, 10.1137/0512020
Reference: [23] Gasper, G., Rahman, M.: Basic Hypergeometric Series.2004, Cambridge University Press, 2nd Ed.. Zbl 1129.33005, MR 2128719
Reference: [24] Gessel, I.M., Stanton, D.: Applications of $q$-Lagrange inversion to basic hypergeometric series.Trans. Amer. Math. Soc., 277, 1983, 173-201, MR 0690047
Reference: [25] Gould, H.W.: Some generalizations of Vandermonde's convolution.Amer. Math. Monthly, 63, 1, 1956, 84-91, MR 0075170, 10.1080/00029890.1956.11988763
Reference: [26] Jackson, F.H.: Certain $q$-identities.Quart. J. Math., 12, 1941, 167-172, MR 0005963, 10.1093/qmath/os-12.1.167
Reference: [27] Karlsson, P.W.: Hypergeometric formulas with integral parameter differences.J. Math. Phys., 12, 2, 1971, 270-271, MR 0276506, 10.1063/1.1665587
Reference: [28] Liu, Z.: An expansion formula for $q$-series and applications.Ramanujan J., 6, 4, 2002, 429-447, MR 2125009, 10.1023/A:1021306016666
Reference: [29] Minton, B.M.: Generalized hypergeometric function of unit argument.J. Math. Phys., 11, 4, 1970, 1375-1376, MR 0262557, 10.1063/1.1665270
Reference: [30] : NIST Digital Library of Mathematical Functions.http://dlmf.nist.gov/17.7.
Reference: [31] Slater, I.J.: Generalized Hypergeometric Functions.1966, Cambridge University Press, Cambridge, MR 0201688
Reference: [32] Verma, A., Jain, V.K.: Some summation formulae for nonterminating basic hypergeometric series.SIAM J. Math. Anal., 16, 3, 1985, 647-655, MR 0783988, 10.1137/0516048
Reference: [33] Verma, A., Joshi, C.M.: Some remarks on summation of basic hypergeometric series.Houston J. Math., 5, 2, 1979, 277-294, MR 0546763
.

Files

Files Size Format View
ActaOstrav_26-2018-2_2.pdf 401.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo