[1] Abbassi, M.T.K., Sarih, M.: 
On Natural Metrics on Tangent Bundles of Riemannian Manifolds. Archivum Mathematicum, 41, 2005, 71-92,  
MR 2142144[2] Cengiz, N., Salimov, A.A.: 
Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput., 142, 2--3, 2003, 309-319,  
MR 1979438[4] Djaa, M., Djaa, N.E.H., Nasri, R.: 
Natural Metrics on $T^{2}M$ and Harmonicity. International Electronic Journal of Geometry, 6, 1, 2013, 100-111,  
MR 3048524[5] Djaa, M., Gancarzewicz, J.: 
The geometry of tangent bundles of order r. Boletin Academia, Galega de Ciencias, 4, 1985, 147-165,  
MR 0908354[6] Djaa, N.E.H., Ouakkas, S., Djaa, M.: 
Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae, 38, 2011, 15-25,  
MR 2872181[7] Dombrowski, P.: 
On the Geometry of the Tangent Bundle. J. Reine Angew. Math., 210, 1962, 73-88,  
MR 0141050[8] Gezer, A.: 
On the Tangent Bundle With Deformed Sasaki Metric. International Electronic Journal of Geometry, 6, 2, 2013, 19-31,  
MR 3125828[10] Sekizawa, O. Kowalski and M.: 
On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum, 44, 2008, 391-401,  
MR 2501575[12] Salimov, A.A., Agca, F.: 
Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255,  
MR 2802327[13] Salimov, A.A, Gezer, A.: 
On the geometry of the $(1, 1$)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, 32, 3, 2011, 369-386,  
DOI 10.1007/s11401-011-0646-3 | 
MR 2805406[14] Salimov, A.A., Gezer, A., Akbulut, K.: 
Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math, 6, 2, 2009, 135-147,  
DOI 10.1007/s00009-009-0001-z | 
MR 2516246[15] Salimov, A.A., Kazimova, S.: 
Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math., 33, 2009, 99-105,  
MR 2524119[18] Yano, K., Ishihara, S.: 
Tangent and Cotangent Bundles. 1973, Marcel Dekker. INC., New York,  
MR 0350650 | 
Zbl 0262.53024