Previous |  Up |  Next

Article

Title: The graded differential geometry of mixed symmetry tensors (English)
Author: Bruce, Andrew James
Author: Ibarguengoytia, Eduardo
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 123-137
Summary lang: English
.
Category: math
.
Summary: We show how the theory of $\mathbb{Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed. (English)
Keyword: $\mathbb{Z}_2^n$-manifolds
Keyword: mixed symmetry tensors
Keyword: dual gravitons
MSC: 53C80
MSC: 58A50
MSC: 83C65
idZBL: Zbl 07088763
idMR: MR3964439
DOI: 10.5817/AM2019-2-123
.
Date available: 2019-06-07T14:53:55Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147751
.
Reference: [1] Bekaert, X., Boulanger, N.: Tensor gauge fields in arbitrary representations of $GL(D,\mathbb{R})$. Duality and Poincaré lemma.Comm. Math. Phys. 245 (1) (2004), 27–67. MR 2036367, 10.1007/s00220-003-0995-1
Reference: [2] Bekaert, X., Boulanger, N., Henneaux, M.: Consistent deformations of dual formulations of linearized gravity: a no-go result.Phys. Rev. D 67 (4) (2003), 044010. MR 1975985, 10.1103/PhysRevD.67.044010
Reference: [3] Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F.: Dual double field theory.J. High Energy Phys. 26 (6) (2016), 39 pp. MR 3538187
Reference: [4] Campoleoni, A.: Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry.Riv. Nuovo Cimento (3) 33 (2010), 123–253.
Reference: [5] Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M.: Effective actions of nongeometric five-branes.Phys. Rev. D 89 (2014), 066004. 10.1103/PhysRevD.89.066004
Reference: [6] Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P.: Tensor Galileons and gravity.J. High Energy Phys. (3) (2017), 070. MR 3657627, 10.1007/JHEP03(2017)070
Reference: [7] Covolo, T., Grabowski, J., Poncin, N.: Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds.J. Geom. Phys. 110 (2016), 393–401. MR 3566123, 10.1016/j.geomphys.2016.09.006
Reference: [8] Covolo, T., Grabowski, J., Poncin, N.: The category of $\mathbb{Z}_2^n$-supermanifolds.J. Math. Phys. 57 (7) (2016), 16 pp., 073503. MR 3522262, 10.1063/1.4955416
Reference: [9] Covolo, T., Kwok, S., Poncin, N.: Differential calculus on $\mathbb{Z}_2^n$-supermanifolds.arXiv:1608.00949 [math.DG].
Reference: [10] Curtright, T.: Generalized gauge fields.Phys. Lett. B 165 (1985), 304–308. 10.1016/0370-2693(85)91235-3
Reference: [11] de Medeiros, P.F., Hull, C.M.: Exotic tensor gauge theory and duality.Comm. Math. Phys. 235 (2003), 255–273. MR 1969728, 10.1007/s00220-003-0810-z
Reference: [12] Dubois-Violette, M., Henneaux, M.: Tensor fields of mixed Young symmetry type and N-complexes.Comm. Math. Phys. 226 (2) (2002), 393–418. MR 1892459, 10.1007/s002200200610
Reference: [13] Hallowell, K., Waldron, A.: Supersymmetric quantum mechanics and super-Lichnerowicz algebras.Comm. Math. Phys. 278 (3) (2008), 775–801. MR 2373443, 10.1007/s00220-007-0393-1
Reference: [14] Hull, C.M.: Strongly coupled gravity and duality.Nuclear Phys. B 583 (1–2) (2000), 237–259. MR 1776849
Reference: [15] Hull, C.M.: Duality in gravity and higher spin gauge fields.J. High Energy Phys. (9) (2001), 25 pp., Paper 27. MR 1867173, 10.1088/1126-6708/2001/09/027
Reference: [16] Khoo, F.S.: Generalized Geometry Approaches to Gravity.Ph.D. thesis, Jacobs University, Bremen, Germany, 2016.
Reference: [17] Lawson, H.B., Michelsohn, M-L.: Spin geometry.Princeton Math. Ser. 38 (1989), xii+427 pp. MR 1031992
Reference: [18] Molotkov, V.: Infinite-dimensional and colored supermanifolds.J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. MR 2827484, 10.1142/S140292511000088X
Reference: [19] Poncin, N.: Towards integration on colored supermanifolds.Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. MR 3642399
Reference: [20] Pradines, J.: Représentation des jets non holonomes par des morphismes vectoriels doubles soudés.C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. Zbl 0285.58002, MR 0388432
Reference: [21] Vaintrob, A.: Darboux theorem and equivariant Morse lemma.J. Geom. Phys. 18 (1) (1996), 59–75. MR 1370829, 10.1016/0393-0440(95)00003-8
Reference: [22] Voronov, Th.: Geometric integration theory on supermanifolds.Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. MR 1202882
Reference: [23] Voronov, Th.: Q-manifolds and Mackenzie theory.Comm. Math. Phys. 315 (2012), 279–310. Zbl 1261.53080, MR 2971727, 10.1007/s00220-012-1568-y
.

Files

Files Size Format View
ArchMathRetro_055-2019-2_5.pdf 554.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo