Previous |  Up |  Next

Article

Title: Results of nonexistence of solutions for some nonlinear evolution problems (English)
Author: Djilali, Medjahed
Author: Hakem, Ali
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 269-284
Summary lang: English
.
Category: math
.
Summary: In the present paper, we prove nonexistence results for the following nonlinear evolution equation, see works of T. Cazenave and A. Haraux (1990) and S. Zheng (2004), $$ u_{tt} +f(x)u_t +(-\Delta)^{\alpha/2}(u^m)= h(t,x) |u|^{p}, $$ posed in $(0,T)\times \mathbb{R}^{N},$ where $(-\Delta)^{{\alpha}/{2}}, 0<\alpha \leq 2$ is ${\alpha}/{2}$-fractional power of $\,-\Delta.$ Our method of proof is based on suitable choices of the test functions in the weak formulation of the sought solutions. Then, we extend this result to the case of a $2\times2$ system of the same type. (English)
Keyword: nonexistence
Keyword: test functions
Keyword: global weak solution
Keyword: fractional Laplacian
Keyword: critical exponent
MSC: 35A01
MSC: 35D30
MSC: 47J35
idZBL: Zbl 07144893
idMR: MR3982472
DOI: 10.14712/1213-7243.2019.001
.
Date available: 2019-08-05T09:52:31Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147814
.
Reference: [1] Cazenave T., Haraux A.: Introduction aux problèmes d'évolution semi-linéaires.Mathématiques & Applications, 1. Ellipses, Paris, 1990 (French). MR 1299976
Reference: [2] Fino A. Z., Ibrahim H., Wehbe A.: A blow-up result for a nonlinear damped wave equation in exterior domain: the critical case.Comput. Math. Appl. 73 (2017), no. 11, 2415–2420. MR 3648022, 10.1016/j.camwa.2017.03.030
Reference: [3] Fujita H.: On the blowing up of solutions of the problem for $ u_t=\Delta u + u^{1+\alpha}$.J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124. MR 0214914
Reference: [4] Guedda M., Kirane M.: A note on nonexistence of global solutions to a nonlinear integral equation.Bull. Belg. Math. Soc. Simon Stevin 6 (1999), no. 4, 491–497. MR 1732885, 10.36045/bbms/1103055577
Reference: [5] Guedda M., Kirane M.: Local and global nonexistence of solutions to semilinear evolution equations.Proc. of the 2002 Fez Conf. on Partial Differential Equations, Electron. J. Differ. Equ. Conf. 09 (2002), 149–160. MR 1976692
Reference: [6] Hakem A.: Nonexistence of weak solutions for evolution problems on $\mathbb{R}^{N}$.Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 1, 73–82. MR 2134858, 10.36045/bbms/1113318131
Reference: [7] Hakem A., Berbiche M.: On the blow-up behavior of solutions to semi-linear wave models with fractional damping.IAENG Int. J. Appl. Math. 41 (2011), no. 3, 206–212. MR 2954229
Reference: [8] Ju N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations.Comm. Math. Phys. 255 (2005), 161–181. MR 2123380, 10.1007/s00220-004-1256-7
Reference: [9] Ogawa T., Takeda H.: Non-existence of weak solutions to nonlinear damped wave equations in exterior domains.Nonlinear Anal. 70 (2009), no. 10, 3696–3701. MR 2504456, 10.1016/j.na.2008.07.025
Reference: [10] Pozrikidis C.: The Fractional Laplacian.CRC Press, Boca Raton, 2016. MR 3470013
Reference: [11] Sun F., Wang M.: Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping.Nonlinear Anal. 66 (2007), no. 12, 2889–2910. MR 2311644, 10.1016/j.na.2006.04.012
Reference: [12] Takeda H.: Global existence and nonexistence of solutions for a system of nonlinear damped wave equations.J. Math. Anal. Appl. 360 (2009), no. 2, 631–650. MR 2561260, 10.1016/j.jmaa.2009.06.072
Reference: [13] Todorova G., Yordanov B.: Critical exponent for a nonlinear wave equation with damping.C. R. Acad. Sci. Paris Sèrie I Math. 330 (2000), no. 7, 557–562. MR 1760438, 10.1016/S0764-4442(00)00228-7
Reference: [14] Zhang Q. S.: A blow up result for a nonlinear wave equation with damping: the critical case.C. R. Acad. Sci. Paris Sèrie I Math. 333 (2001), no. 2, 109–114. MR 1847355, 10.1016/S0764-4442(01)01999-1
Reference: [15] Zheng S.: Nonlinear Evolution Equations.Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 113, Chapman & Hall/CRC Press, Boca Raton, 2004. MR 2088362
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_9.pdf 288.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo