Previous |  Up |  Next

Article

Title: Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions (English)
Author: Argyros, Ioannis K.
Author: George, Santhosh
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 219-229
Summary lang: English
.
Category: math
.
Summary: A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. (English)
Keyword: Newton-Jarratt's method
Keyword: radius of convergence
Keyword: local convergence
Keyword: decomposition techniques
Keyword: restricted convergence domain
MSC: 41A25
MSC: 49M15
MSC: 65D10
MSC: 65D99
MSC: 65J20
MSC: 74G20
idZBL: Zbl 07144891
idMR: MR3982470
DOI: 10.14712/1213-7243.2019.005
.
Date available: 2019-08-05T09:49:16Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147815
.
Reference: [1] Amat S., Busquier S., Negra M.: Adaptive approximation of nonlinear operators.Numer. Funct. Anal. Optim. 25 (2004), no. 5–6, 397–405. Zbl 1071.65077, MR 2106266, 10.1081/NFA-200042628
Reference: [2] Argyros I. K.: Computational Theory of Iterative Methods.Studies in Computational Mathematics, 15, Elsevier, Amsterdam, 2007. Zbl 1147.65313, MR 2356038
Reference: [3] Argyros I. K., Cho Y. J., George S.: Local convergence for some third-order iterative methods under weak conditions.J. Korean Math. Soc. 53 (2016), no. 4, 781–793. MR 3521238, 10.4134/JKMS.j150244
Reference: [4] Argyros I. K., George S.: Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions.Calcolo 53 (2016), no. 4, 585–595. MR 3574604, 10.1007/s10092-015-0163-y
Reference: [5] Argyros I. K., Magreñán Á. A.: Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems.Appl. Math. Comput. 241 (2014), 401–408. MR 3223438
Reference: [6] Argyros I. K., Szidarovszky F.: The Theory and Applications of Iteration Methods.Systems Engineering Series, CRC Press, Boca Raton, 1993. MR 1272012
Reference: [7] Cordero A., Hueso J., Martinez E., Torregrosa J. R.: A modified Newton-Jarratt's composition.Numer. Algorithms 55 (2010), no. 1, 87–99. MR 2679752, 10.1007/s11075-009-9359-z
Reference: [8] Cordero A., Torregrosa J. R.: Variants of Newton's method for functions of several variables.Appl. Math. Comput. 183 (2006), no. 1, 199–208. MR 2282802
Reference: [9] Cordero A., Torregrosa J. R.: Variants of Newton's method using fifth-order quadrature formulas.Appl. Math. Comput. 190 (2007), no. 1, 686–698. MR 2338747
Reference: [10] Ezquerro J. A., Hernández M. A., Romero A. N.: Approximacion de soluciones de algunas equacuaciones integrals de Hammerstein mediante metodos iterativos tipo.Newton, XXI Congresode ecuaciones diferenciales y aplicaciones Universidad de Castilla-La Mancha, Ciudad Real, 2009, 8 pages.
Reference: [11] Grau-Sánchez M., Grau À., Noguera M.: On the computational efficiency index and some iterative methods for solving systems of non-linear equations.J. Comput. Appl. Math. 236 (2011), no. 6, 1259–1266. MR 2854048, 10.1016/j.cam.2011.08.008
Reference: [12] Gutiérrez J. M., Hernández M. A.: Newton's method under weak Kantorovich conditions.IMA J. Numer. Anal. 20 (2000), no. 4, 521–532. MR 1795296, 10.1093/imanum/20.4.521
Reference: [13] Homeier H. H. H.: A modified Newton method with cubic convergence, the multivariate case.J. Comput. Appl. Math. 169 (2004), no. 1, 161–169. MR 2071267, 10.1016/j.cam.2003.12.041
Reference: [14] Homeier H. H. H.: On Newton-type methods with cubic convergence.J. Comput. Appl. Math. 176 (2005), no. 2, 425–432. MR 2116403, 10.1016/j.cam.2004.07.027
Reference: [15] Kou J., Li Y., Wang X.: Some modification of Newton's method with fifth-order convergence.J. Comput. Appl. Math. 209 (2007), no. 2, 146–152. MR 2387121, 10.1016/j.cam.2006.10.072
Reference: [16] Noor M. A., Waseem M.: Some iterative methods for solving a system of nonlinear equations.Comput. Math. Appl. 57 (2009), no. 1, 101–106. MR 2484261, 10.1016/j.camwa.2008.10.067
Reference: [17] Ren H., Argyros I. K.: Improved local analysis for a certain class of iterative methods with cubic convergence.Numer. Algorithms 59 (2012), no. 4, 505–521. MR 2892562, 10.1007/s11075-011-9501-6
Reference: [18] Rheinboldt W. C.: An adaptive continuation process for solving systems of nonlinear equations.Mathematical models and numerical methods, Banach Center Publ., 3, PWN, Warszawa, 1978, pages 129–142. Zbl 0378.65029, MR 0514377
Reference: [19] Shah F. A., Noor M. A.: Some numerical methods for solving nonlinear equations by using decomposition technique.Appl. Math. Comput. 251 (2015), 378–386. MR 3294725
Reference: [20] Sharma J. R., Gupta P.: An efficient fifth order method for solving systems of nonlinear equations.Comput. Math. Appl. 67 (2014), no. 3, 591–601. MR 3149734, 10.1016/j.camwa.2013.12.004
Reference: [21] Traub J. F.: Iterative Methods for the Solution of Equations.AMS Chelsea Publishing, New York, 1982. Zbl 0672.65025
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_7.pdf 259.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo