Previous |  Up |  Next

Article

Title: Dieudonné-type theorems for lattice group-valued $k$-triangular set functions (English)
Author: Boccuto, Antonio
Author: Dimitriou, Xenofon
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 233-251
Summary lang: English
.
Category: math
.
Summary: Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems. (English)
Keyword: lattice group
Keyword: $(D)$-convergence
Keyword: $k$-triangular set function
Keyword: $(s)$-bounded set function
Keyword: Fremlin lemma
Keyword: limit theorem
Keyword: Brooks–Jewett theorem
Keyword: Dieudonné theorem
Keyword: Nikodým boundedness theorem
MSC: 28A12
MSC: 28A33
MSC: 28B10
MSC: 28B15
MSC: 40A35
MSC: 46G10
idZBL: Zbl 07144936
idMR: MR4014585
DOI: 10.14736/kyb-2019-2-0233
.
Date available: 2019-09-30T14:54:58Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147835
.
Reference: [1] Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications..Physica-Verlag, Heidelberg 1999. MR 1718470
Reference: [2] Barbieri, G.: On Dieudonné's boundedness theorem..Boll. Un. Mat. Ital. II 9 (2009), 343-348. MR 2537274
Reference: [3] Barbieri, G.: On the Dieudonné theorem..Sci. Math. Japon. 44 (2009), 403-408. MR 2562049, 10.1007/bf00966618
Reference: [4] Barbieri, G., Boccuto, A.: On extensions of $k$-subadditive lattice group-valued capacities..Italian J. Pure Appl. Math. 37 (2017), 387-408. MR 3622941
Reference: [5] Barbieri, G., Boccuto, A.: On some properties of $k$-subadditive lattice group-valued capacities..Math. Slovaca 67 (2017), 1387-1408. MR 3739367, 10.1515/ms-2017-0059
Reference: [6] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces..Tatra Mt. Math. Publ. 8 (1996), 29-42. MR 1475257
Reference: [7] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence..Tatra Mt. Math. Publ. 10 (1997), 33-54. MR 1469280
Reference: [8] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces..Acta Math. (Nitra) 6 (2003), 61-66.
Reference: [9] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergece results for measures with values in complete $(\ell)$-groups..J. Math. Anal. Appl. 265 (2002), 170-194. MR 1874264, 10.1006/jmaa.2001.7715
Reference: [10] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(\ell)$-groups..Real Anal. Exchange 27 (2002), 473-484. MR 1922663, 10.14321/realanalexch.27.2.0473
Reference: [11] Boccuto, A., Candeloro, D.: Uniform boundedness theorems in Riesz spaces..Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. MR 2152821
Reference: [12] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in $(\ell)$-groups..Kybernetika 46 (2010), 1049-1060. MR 2797426
Reference: [13] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and regularity for $(\ell)$-group-valued measures..Cent. Eur. J. Math. 9 (2) (2011), 433-440. MR 2772437, 10.2478/s11533-010-0097-1
Reference: [14] Boccuto, A., Dimitriou, X.: Ideal limit theorems and their equivalence in $(\ell)$-group setting..J. Math. Research 5 (2013), 43-60. 10.5539/jmr.v5n2p42
Reference: [15] Boccuto, A., Dimitriou, X.: Limit theorems for topological group-valued maesures..Acta Math. (Nitra) 16 (2013), 37-43. MR 3365401
Reference: [16] Boccuto, A., Dimitriou, X.: Convergence Theorems for Lattice Group-Valued Measures..Bentham Science Publ., Sharjah 2015. MR 3478113, 10.2174/97816810800931150101
Reference: [17] Boccuto, A., Dimitriou, X.: Limit theorems for $k$-subadditive lattice group-valued capacities in the filter convergence setting.Tatra Mt. Math. Publ. 65 (2016), 1-21. MR 3529302, 10.1515/tmmp-2016-0001
Reference: [18] Boccuto, A., Dimitriou, X.: Matrix theorems and interchange for lattice group-valued series in the filter convergence setting..Bull. Hellenic Math. Soc. 59 (2016), 39-55. MR 3602294
Reference: [19] Boccuto, A., Dimitriou, X.: Limit theorems for lattice group-valued $k$-triangular set functions..In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10. MR 3825621
Reference: [20] Boccuto, A., Dimitriou, X.: Schur-type theorems for $k$-triangular lattice group-valued set functions with respect to filter convergence..Appl. Math. Sci. 11 (2017), 2825-2833. MR 3825621, 10.12988/ams.2017.710298
Reference: [21] Boccuto, A., Dimitriou, X.: Non-Additive Lattice Group-Valued Set Functions And Limit Theorems..Lambert Acad. Publ., Mauritius 2017.
Reference: [22] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions..Mediterranean J. Math. 15 (2018), 1-20. MR 3825621, 10.1007/s00009-018-1222-9
Reference: [23] Boccuto, A., Dimitriou, X.: Filter exhaustiveness and filter limit theorems for $k$-triangular lattice group-valued set functions..Rend. Lincei Mat. Appl. (2019), in press. MR 3825621
Reference: [24] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Some versions of limit and Dieudonné-type theorems with respect to filter convergence for $(\ell)$-group-valued measures..Cent. Eur. J. Math. 9 (2011), 1298-1311. MR 2836722, 10.2478/s11533-011-0083-2
Reference: [25] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces..In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58.
Reference: [26] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Schur lemma and limit theorems in lattice groups with respect to filters..Math. Slovaca 62 (2012), 1145-1166. MR 3003783, 10.2478/s12175-012-0070-5
Reference: [27] Boccuto, A., Riečan, B., Sambucini, A. R.: On the product of $M$-measures in $(\ell)$-groups..Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8. MR 2601882
Reference: [28] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces..Bentham Science Publ., Sharjah 2009. 10.2174/97816080500311090101
Reference: [29] Brooks, J. K., Chacon, R. V.: Continuity and compactness of measures..Adv. Math. 37 (1980), 16-26. MR 0585896, 10.1016/0001-8708(80)90023-7
Reference: [30] Candeloro, D.: On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian)..Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445. MR 0881420
Reference: [31] Candeloro, D., Letta, G.: On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian).Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213. MR 0899250
Reference: [32] Candeloro, D., Sambucini, A. R.: Filter convergence and decompositions for vector lattice-valued measures..Mediterranean J. Math. 12 (2015), 621-637. MR 3376802, 10.1007/s00009-014-0431-0
Reference: [33] Cavaliere, P., Lucia, P. de: Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem..Sci. Math. Japan. 66 (2007), 313-323. MR 2361636
Reference: [34] Dieudonné, J.: Sur la convergence des suites de mesures de Radon..An. Acad. Brasil. Ci. 23 (1951), 21-38. MR 0042496
Reference: [35] Dobrakov, I.: On submeasures I..Dissertationes Math. 112 (1974), 5-35. MR 0367140
Reference: [36] Dugundji, J.: Topology..Allyn and Bacon Inc., Boston 1966. MR 0193606
Reference: [37] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem..J. London Math. Soc. 11 (1975), 276-284. MR 0380345, 10.1112/jlms/s2-11.3.276
Reference: [38] Guariglia, E.: On Dieudonné's boundedness theorem..J. Math. Anal. Appl. 145 (1990), 447-454. MR 1038169, 10.1016/0022-247x(90)90412-9
Reference: [39] Pap, E.: A generalization of a Dieudonné theorem for $k$-triangular set functions..Acta Sci. Math. 50 (1986), 159-167. MR 0862190, 10.1007/bf01874617
Reference: [40] Pap, E.: The Vitali-Hahn-Saks Theorems for $k$-triangular set functions..Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. MR 0922985
Reference: [41] Pap, E.: Null-Additive Set Functions..Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995. MR 1368630
Reference: [42] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering..Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava 1997. Zbl 0916.28001, MR 1489521, 10.1007/978-94-015-8919-2
Reference: [43] Saeki, S.: The Vitali-Hahn-Saks theorem and measuroids..Proc. Amer. Math. Soc. 114 (1992), 775-782. MR 1088446, 10.1090/s0002-9939-1992-1088446-8
Reference: [44] Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras..Dissertationes Math. 214 (1982), 1-33. MR 0673286
Reference: [45] Stein, J. D., Jr.: A uniform-boundedness theorem for measures..Michigan Math. J. 19 (1972), 161-165. MR 0299746, 10.1307/mmj/1029000848
Reference: [46] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures..Arch. Math. 53 (1989), 390-393. MR 1016003, 10.1007/bf01195219
Reference: [47] Ventriglia, F.: Dieudonné's theorem for non-additive set functions..J. Math. Anal. Appl. 367 (2010), 296-303. MR 2600399, 10.1016/j.jmaa.2010.01.017
Reference: [48] Vulikh, B. Z.: Introduction to the Theory of Partially Ordered Spaces..Wolters-Noordhoff Sci. Publ., Groningen 1967. MR 0224522
.

Files

Files Size Format View
Kybernetika_55-2019-2_2.pdf 528.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo