Previous |  Up |  Next

Article

Keywords:
lattice; binary operation; neutral element; lattice representation
Summary:
In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.
References:
[1] Ashraf, M., Ali, S., Haetinger, C.: On derivations in rings and their applications. Aligarh Bull. Math. 25 (2006), 79-107. MR 2537802
[2] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer, Berlin 2013. MR 3024762 | Zbl 1271.03001
[3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg 2007.
[4] Birkhoff, G.: Lattice Theory. Third edition. Amer. Math. Soc., Providence 1967. MR 0227053
[5] Blyth, T. S.: Set theory and abstract algebra. Longman, London, New York 1975. MR 0223196
[6] Cooman, G. D., Kerre, E. E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310. MR 1280148 | Zbl 0814.04005
[7] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Second edition. Cambridge University Press, 2002. DOI 10.1017/cbo9780511809088 | MR 1902334
[8] Dummit, D. S., Foote, R. M.: Abstract Algebra. Third edition. Hoboken, Wiley 2004. MR 2286236
[9] Ferrari, L.: On derivations of lattices. Pure Math. Appl. 12 (2001), 365-382. MR 1943869
[10] Grätzer, G., Wehrung, F.: Lattice Theory: Special Topics and Applications. Volume 1. Springer International Publishing Switzerland, 2014. DOI 10.1007/978-3-319-06413-0 | MR 2451139
[11] Grätzer, G., Wehrung, F.: Lattice theory: Special Topics and Applications. Volume 2. Springer International Publishing Switzerland, 2016. DOI 10.1007/978-3-319-44236-5 | MR 2451139
[12] Halaš, R., Pócs, J.: On the clone of aggregation functions on bounded lattices. Inform. Sci. 329 (2016), 381-389. DOI 10.1016/j.ins.2015.09.038
[13] Jwaid, T., Baets, B. De, Kalická, J., Mesiar, R.: Conic aggregation functions. Fuzzy Sets Systems 167 (2011), 3-20. DOI 10.1016/j.fss.2010.07.004 | MR 2765243
[14] Karaçal, F., glu, M. N. Kesicio\v: A t-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579
[15] Karaçal, F., Mesiar, R.: Aggregation functions on bounded lattices. Int. J. General Systems 46 (2017), 37-51. DOI 10.1080/03081079.2017.1291634 | MR 3623328
[16] Kolman, B., Busby, R. C., Ross, S. C.: Discrete Mathematical Structures. Fourth edition. Prentice-Hall, Inc., 2003.
[17] Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and theirs classification. Fuzzy Sets Systems 175 (2011), 48-56. DOI 10.1016/j.fss.2011.01.015 | MR 2803411
[18] Lidl, R., Pilz, G.: Applied Abstract Algebra. Second edition. Springer-Verlag, New York, Berlin, Heidelberg 1998. DOI 10.1007/978-1-4757-2941-2 | MR 1485777
[19] Lipschutz, S.: Discrete Mathematics. Third edition. McGraw-Hill, 2007. DOI 10.1201/b13782
[20] Martínez, R., Massó, J., Neme, A., Oviedo, J.: On the lattice structure of the set of stable matchings for a many to one model. Optimization 50 (2001), 439-457. DOI 10.1080/02331930108844574 | MR 1892915
[21] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets and Systems 202 (2012), 75-88. DOI 10.1016/j.fss.2012.03.002 | MR 2934787
[22] Mesiar, R., Komorníková, M.: Aggregation functions on bounded posets. 35 Years of Fuzzy Set Theory, Springer, Berlin, Heidelberg 261 (2010), pp. 3-17. DOI 10.1007/978-3-642-16629-7_1 | MR 3289892
[23] Ponasse, D., Carrega, J. C.: Algèbre et tobologie boléennes. Masson, Paris 1979. MR 0532013
[24] Risma, E. P.: Binary operations and lattice structure for a model of matching with contracts. Math. Soc. Sci. 73 (2015), 6-12. DOI 10.1016/j.mathsocsci.2014.11.001 | MR 3294778
[25] Roman, S.: Lattices and Ordered Sets. Springer Science and Business Media, New York 2008. DOI 10.1007/978-0-387-78901-9 | MR 2446182
[26] Rosenfeld, A.: An Introduction to Algebraic Structures. Holden-Day, San Francisco 1968. MR 0232630
[27] Schröder, B. S.: Ordered Sets. Birkhauser, Boston 2003. DOI 10.1007/978-1-4612-0053-6 | MR 1944415
[28] Szász, G.: Translationen der verbände. Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961), 449-453. DOI 10.1007/bf01238704 | MR 0132705
[29] Szász, G.: Derivations of lattices. Acta Sci. Math. 37 (1975), 149-154. DOI 10.1016/s0020-1693(00)93924-0 | MR 0382090
[30] Xin, X. L., Li, T. Y., Lu, J. H.: On derivations of lattices. Inform. Sci. 178 (2008), 307-316. DOI 10.1016/j.ins.2007.08.018 | MR 2363221
Partner of
EuDML logo