[1] Ashraf, M., Ali, S., Haetinger, C.:
On derivations in rings and their applications. Aligarh Bull. Math. 25 (2006), 79-107.
MR 2537802
[3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg 2007.
[4] Birkhoff, G.:
Lattice Theory. Third edition. Amer. Math. Soc., Providence 1967.
MR 0227053
[5] Blyth, T. S.:
Set theory and abstract algebra. Longman, London, New York 1975.
MR 0223196
[6] Cooman, G. D., Kerre, E. E.:
Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310.
MR 1280148 |
Zbl 0814.04005
[8] Dummit, D. S., Foote, R. M.:
Abstract Algebra. Third edition. Hoboken, Wiley 2004.
MR 2286236
[9] Ferrari, L.:
On derivations of lattices. Pure Math. Appl. 12 (2001), 365-382.
MR 1943869
[12] Halaš, R., Pócs, J.:
On the clone of aggregation functions on bounded lattices. Inform. Sci. 329 (2016), 381-389.
DOI 10.1016/j.ins.2015.09.038
[14] Karaçal, F., glu, M. N. Kesicio\v:
A t-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
MR 2828579
[16] Kolman, B., Busby, R. C., Ross, S. C.: Discrete Mathematical Structures. Fourth edition. Prentice-Hall, Inc., 2003.
[17] Komorníková, M., Mesiar, R.:
Aggregation functions on bounded partially ordered sets and theirs classification. Fuzzy Sets Systems 175 (2011), 48-56.
DOI 10.1016/j.fss.2011.01.015 |
MR 2803411
[19] Lipschutz, S.:
Discrete Mathematics. Third edition. McGraw-Hill, 2007.
DOI 10.1201/b13782
[20] Martínez, R., Massó, J., Neme, A., Oviedo, J.:
On the lattice structure of the set of stable matchings for a many to one model. Optimization 50 (2001), 439-457.
DOI 10.1080/02331930108844574 |
MR 1892915
[23] Ponasse, D., Carrega, J. C.:
Algèbre et tobologie boléennes. Masson, Paris 1979.
MR 0532013
[26] Rosenfeld, A.:
An Introduction to Algebraic Structures. Holden-Day, San Francisco 1968.
MR 0232630