Previous |  Up |  Next

Article

Title: The elliptic problems in a family of planar open sets (English)
Author: Tami, Abdelkader
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 5
Year: 2019
Pages: 485-499
Summary lang: English
.
Category: math
.
Summary: We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions decompose, puts into evidence the analogy of such decompositions with standard Taylor expansions, and gives uniform estimates with respect to the angle parameter. This last property allows the treatment of families of elliptic problems on families of open sets. (English)
Keyword: biharmonic operator
Keyword: elliptic problems
Keyword: nonsmooth boundaries
Keyword: uniform singularity estimates
Keyword: Sobolev spaces
MSC: 35B40
MSC: 35B45
MSC: 35J25
MSC: 35J40
MSC: 35J75
MSC: 35Q99
idZBL: 07144725
idMR: MR4022159
DOI: 10.21136/AM.2019.0057-19
.
Date available: 2019-10-16T10:57:52Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147846
.
Reference: [1] Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners.Math. Methods Appl. Sci. 2 (1980), 556-581. Zbl 0445.35023, MR 0595625, 10.1002/mma.1670020416
Reference: [2] Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems. I.Proc. R. Soc. Edinb., Sect. A 123 (1993), 109-155. Zbl 0791.35032, MR 1204855, 10.1017/S0308210500021272
Reference: [3] Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems. II.Proc. R. Soc. Edinb., Sect. A 123 (1993), 157-184. Zbl 0791.35033, MR 1204855, 10.1017/S0308210500021284
Reference: [4] Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions.Lecture Notes in Mathematics 1341, Springer, Berlin (1988). Zbl 0668.35001, MR 0961439, 10.1007/BFb0086682
Reference: [5] Dauge, M., Nicaise, S., Bourlard, M., Lubuma, J. M.-S.: Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. I. Résultats généraux pour le problème de Dirichlet.RAIRO, Modélisation Math. Anal. Numér. 24 (1990), 27-52 French. Zbl 0691.35023, MR 1034897, 10.1051/m2an/1990240100271
Reference: [6] Grisvard, P.: Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyèdre.Boll. Unione Mat. Ital., IV. Ser. 5 (1972), 132-164 French. Zbl 0277.35035, MR 0312068
Reference: [7] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24, Pitman Advanced Publishing Program, Pitman Publishing, Boston (1985). Zbl 0695.35060, MR 0775683, 10.1137/1.9781611972030
Reference: [8] Kondrat'ev, V. A.: Boundary problems for elliptic equations in domains with conical or angular points.Trans. Mosc. Math. Soc. 16 (1967), 227-313 Translated from Trudy Moskov. Mat. Obšč. 16 1967 209-292. Zbl 0194.13405, MR 0226187
Reference: [9] Maz'ya, V. G., Plamenevskij, B. A.: $L_p$-estimates of solutions of elliptic boundary value problems in domains with edges.Trans. Mosc. Math. Soc. (1980), 49-97. Zbl 0453.35025, MR 0514327
Reference: [10] Maz'ya, V. G., Plamenevskij, B. A.: Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary.Transl., Ser. 2, Am. Math. Soc. 123 (1984), 1-56 Translated from Math. Nachr. 81 1978 25-82. Zbl 0554.35035, MR 0492821, 10.1002/mana.19780810103
Reference: [11] Maz'ya, V., Rossmann, J.: On a problem of Babuška (Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points).Math. Nachr. 155 (1992), 199-220. Zbl 0794.35039, MR 1231265, 10.1002/mana.19921550115
Reference: [12] Nicaise, S.: Polygonal interface problems for the biharmonic operator.Math. Methods Appl. Sci. 17 (1994), 21-39. Zbl 0820.35041, MR 1257586, 10.1002/mma.1670170104
Reference: [13] Nicaise, S., Sändig, A.-M.: General interface problems. I.Math. Methods Appl. Sci. 17 (1994), 395-429. Zbl 0824.35014, MR 1274152, 10.1002/mma.1670170602
Reference: [14] Nicaise, S., Sändig, A.-M.: General interface problems. II.Math. Methods Appl. Sci. 17 (1994), 431-450. Zbl 0824.35015, MR 1274152, 10.1002/mma.1670170603
Reference: [15] Tami, A.: Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan.Ph.D. Thesis, Aix-Marseille University France (2016). Available at https://www.theses.fr/224126822 French.
.

Files

Files Size Format View
AplMat_64-2019-5_1.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo