Previous |  Up |  Next

Article

Title: Multi-Morrey spaces for non-doubling measures (English)
Author: He, Suixin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1039-1052
Summary lang: English
.
Category: math
.
Summary: The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces. (English)
Keyword: multi-Morrey space
Keyword: multilinear maximal function
Keyword: multilinear fractional integral operator
Keyword: multilinear Calderón-Zygmund operator
MSC: 42B25
MSC: 42B35
idZBL: 07144873
idMR: MR4039618
DOI: 10.21136/CMJ.2019.0031-18
.
Date available: 2019-11-28T08:50:07Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147912
.
Reference: [1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 0458158, 10.1215/S0012-7094-75-04265-9
Reference: [2] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures.Stud. Math. 162 (2004), 245-261. Zbl 1045.42006, MR 2047654, 10.4064/sm162-3-5
Reference: [3] García-Cuerva, J., Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces.Indiana Univ. Math. J. 50 (2001), 1241-1280. Zbl 1023.42012, MR 1871355, 10.1512/iumj.2001.50.2100
Reference: [4] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Sharp bounds for multilinear fractional integral operators on Morrey type spaces.Positivity 16 (2012), 339-358. Zbl 1256.42037, MR 2929094, 10.1007/s11117-011-0129-5
Reference: [5] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory.Adv. Math. 220 (2009), 1222-1264. Zbl 1160.42009, MR 2483720, 10.1016/j.aim.2008.10.014
Reference: [6] Lin, H.-B., Yang, D.-C.: Endpoint estimates for multilinear fractional integrals with non-doubling measures.Acta Math. Appl. Sin., Engl. Ser. 30 (2014), 755-764. Zbl 1304.42037, MR 3285972, 10.1007/s10255-012-0194-y
Reference: [7] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [8] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1997 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469
Reference: [9] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1998 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312
Reference: [10] Nazarov, F., Treil, S., Volberg, A.: The {$Tb$}-theorem on non-homogeneous spaces.Acta Math. 190 (2003), 151-239. Zbl 1065.42014, MR 1998349, 10.1007/BF02392690
Reference: [11] Sawano, Y.: Generalized Morrey spaces for non-doubling measures.NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. Zbl 1173.42317, MR 2465971, 10.1007/s00030-008-6032-5
Reference: [12] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures.Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. Zbl 1129.42403, MR 2190025, 10.1007/s10114-005-0660-z
Reference: [13] Tolsa, X.: BMO, {$H^1$}, and Calderón-Zygmund operators for non doubling measures.Math. Ann. 319 (2001), 89-149. Zbl 0974.42014, MR 1812821, 10.1007/PL00004432
Reference: [14] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity.Acta Math. 190 (2003), 105-149. Zbl 1060.30031, MR 1982794, 10.1007/BF02393237
Reference: [15] Tolsa, X.: The space {$H^1$} for nondoubling measures in terms of a grand maximal operator.Trans. Am. Math. Soc. 355 (2003), 315-348. Zbl 1021.42010, MR 1928090, 10.1090/S0002-9947-02-03131-8
Reference: [16] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture.Am. J. Math. 126 (2004), 523-567. Zbl 1060.30032, MR 2058383, 10.1353/ajm.2004.0021
Reference: [17] Zhou, J., Wang, D.: Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces.Abstr. Appl. Anal. (2014), Article ID 174010, 8 pages. Zbl 07021865, MR 3198155, 10.1155/2014/174010
.

Files

Files Size Format View
CzechMathJ_69-2019-4_11.pdf 315.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo