Previous |  Up |  Next

Article

Title: On row-sum majorization (English)
Author: Akbarzadeh, Farzaneh
Author: Armandnejad, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1111-1121
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {M}_{n,m}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb {M}_{n,m}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^{\rm rs} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb {R}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb {M}_{n,m}\rightarrow \mathbb {M}_{n,m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb {R}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb {M}_{n,m}$. (English)
Keyword: majorization
Keyword: linear preserver
Keyword: doubly stochastic matrix
MSC: 15A04
MSC: 15A21
idZBL: 07144880
idMR: MR4039625
DOI: 10.21136/CMJ.2019.0084-18
.
Date available: 2019-11-28T08:53:07Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147919
.
Reference: [1] Ando, T.: Majorization, doubly stochastic matrices, and comparison of eigenvalues.Linear Algebra Appl. 118 (1989), 163-248. Zbl 0673.15011, MR 0995373, 10.1016/0024-3795(89)90580-6
Reference: [2] Armandnejad, A., Heydari, H.: Linear preserving $gd$-majorization functions from $M_{n,m}$ to $M_{n,k}$.Bull. Iran. Math. Soc. 37 (2011), 215-224. Zbl 1237.15021, MR 2850115
Reference: [3] Bhatia, R.: Matrix Analysis.Graduate Texts in Mathematics 169, Springer, New York (1997). Zbl 0863.15001, MR 1477662, 10.1007/978-1-4612-0653-8
Reference: [4] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices.Electron. J. Linear Algebra 15 (2006), 260-268. Zbl 1145.15003, MR 2255479, 10.13001/1081-3810.1236
Reference: [5] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of Hadamard majorization.Electron. J. Linear Algebra 31 (2016), 593-609. Zbl 1347.15005, MR 3578394, 10.13001/1081-3810.3281
Reference: [6] Soleymani, M., Armandnejad, A.: Linear preservers of circulant majorization on $\mathbb{R}^n$.Linear Algebra Appl. 440 (2014), 286-292. Zbl 1286.15033, MR 3134271, 10.1016/j.laa.2013.10.040
Reference: [7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$.Linear Multilinear Algebra 62 (2014), 1437-1449. Zbl 1309.15045, MR 3261749, 10.1080/03081087.2013.832487
.

Files

Files Size Format View
CzechMathJ_69-2019-4_18.pdf 284.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo