Previous |  Up |  Next

Article

Title: The Wells map for abelian extensions of 3-Lie algebras (English)
Author: Tan, Youjun
Author: Xu, Senrong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1133-1164
Summary lang: English
.
Category: math
.
Summary: The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions $0\rightarrow A\hookrightarrow L\stackrel {\pi }{\rightarrow } B\rightarrow 0$ of 3-Lie algebras to obtain obstruction classes in $H^1(B,A)$ for a pair of automorphisms in ${\rm Aut}(A)\times {\rm Aut}(B)$ to be inducible from an automorphism of $L$. Application to free nilpotent 3-Lie algebras is discussed. (English)
Keyword: automorphisms of 3-Lie algebras
Keyword: representations of 3-Lie algebras
Keyword: abelian extensions
Keyword: cohomology
Keyword: free nilpotent 3-Lie algebras
MSC: 16E40
MSC: 17A36
MSC: 17A42
idZBL: 07144882
idMR: MR4039627
DOI: 10.21136/CMJ.2019.0098-18
.
Date available: 2019-11-28T08:54:05Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147921
.
Reference: [1] Baer, R.: Erweiterung von Gruppen und ihren Isomorphismen.Math. Z. 38 German (1934), 375-416. Zbl 0009.01101, MR 1545456, 10.1007/bf01170643
Reference: [2] Bardakov, V. G., Singh, M.: Extensions and automorphisms of Lie algebras.J. Algebra Appl. 16 (2017), Article ID 1750162, 15 pages. Zbl 06745716, MR 3661629, 10.1142/s0219498817501626
Reference: [3] Daletskii, Y. L., Takhtajan, L. A.: Leibniz and Lie algebra structures for Nambu algebra.Lett. Math. Phys. 39 (1997), 127-141. Zbl 0869.58024, MR 1437747, 10.1023/a:1007316732705
Reference: [4] Filippov, V. T.: $n$-Lie algebras.Sib. Math. J. 26 (1985), 879-891 translation from Sibirsk. Mat. Zh. 26 1985 126-140. Zbl 0594.17002, MR 0816511, 10.1007/bf00969110
Reference: [5] Hilton, P. J., Stammbach, U.: A Course in Homological Algebra.Graduate Texts in Mathematics 4, Springer, New York (1997). Zbl 0863.18001, MR 1438546, 10.1007/978-1-4419-8566-8
Reference: [6] Jin, P.: Automorphisms of groups.J. Algebra 312 (2007), 562-569. Zbl 1131.20037, MR 2333172, 10.1016/j.jalgebra.2007.03.009
Reference: [7] Jin, P., Liu, H.: The Wells exact sequence for the automorphism group of a group extension.J. Algebra 324 (2010), 1219-1228. Zbl 1211.20044, MR 2671802, 10.1016/j.jalgebra.2010.04.034
Reference: [8] Kasymov, Sh. M.: Theory of $n$-Lie algebras.Algebra Logic 26 (1987), 155-166 translation from Algebra Logika 26 1987 277-297. Zbl 0658.17003, MR 0962883, 10.1007/bf02009328
Reference: [9] Passi, I. B. S., Singh, M., Yadav, M. K.: Automorphisms of abelian group extensions.J. Algebra 324 (2010), 820-830. Zbl 1209.20021, MR 2651570, 10.1016/j.jalgebra.2010.03.029
Reference: [10] Robinson, D. J. S.: Automorphisms of group extensions.Note Mat. 33 (2013), 121-129. Zbl 1286.20029, MR 3071316, 10.1285/i15900932v33n1p121
Reference: [11] Takhtajan, L.: On foundation of the generalized Nambu mechanics.Commun. Math. Phys. 160 (1994), 295-315. Zbl 0808.70015, MR 1262199, 10.1007/bf02103278
Reference: [12] Takhtajan, L. A.: Higher order analog of Chevalley-Eilenberg complex and deformation theory of $n$-gebras.St. Petersbg. Math. J. 6 (1995), 429-438 translation from Algebra Anal. 6 1994 262-272. Zbl 0833.17021, MR 1290830
Reference: [13] Wells, C.: Automorphisms of group extensions.Trans. Am. Math. Soc. 155 (1971), 189-194. Zbl 0221.20054, MR 0272898, 10.2307/1995472
Reference: [14] Xu, S.: Cohomology, derivations and abelian extensions of 3-Lie algebras.J. Algebra Appl. 18 (2019), Article ID 1950130, 26 pages. MR 3977791, 10.1142/S0219498819501305
.

Files

Files Size Format View
CzechMathJ_69-2019-4_20.pdf 398.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo