Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
singularly perturbed ODE; Robin boundary function; energetic Robin boundary function; collocation method
Summary:
For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.
References:
[1] Ascher, U. M., Mattheij, R. M. M., Russell, R. D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics 13, SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1995). DOI 10.1137/1.9781611971231 | MR 1351005 | Zbl 0843.65054
[2] Awoke, A., Reddy, Y. N.: An exponentially fitted special second-order finite difference method for solving singular perturbation problems. Appl. Math. Comput. 190 (2007), 1767-1782. DOI 10.1016/j.amc.2007.02.051 | MR 2339770 | Zbl 1122.65377
[3] Bender, C. M., Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1978). MR 0538168 | Zbl 0417.34001
[4] Cash, J. R.: Numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections. I. A survey and comparison of some one-step formulae. Comput. Math. Appl., Part A 12 (1986), 1029-1048. DOI 10.1016/0898-1221(86)90009-X | MR 0862027 | Zbl 0618.65071
[5] Cash, J. R.: On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections. II. The development and analysis of highly stable deferred correction formulae. SIAM J. Numer. Anal. 25 (1988), 862-882. DOI 10.1137/0725049 | MR 0954789 | Zbl 0658.65070
[6] Cash, J. R., Wright, R. W.: Continuous extensions of deferred correction schemes for the numerical solution of nonlinear two-point boundary value problems. Appl. Numer. Math. 28 (1998), 227-244. DOI 10.1016/S0168-9274(98)00045-2 | MR 1655162 | Zbl 0926.65078
[7] Doğan, N., Ertürk, V. S., Akı{n}, Ö.: Numerical treatment of singularly perturbed two-point boundary value problems by using differential transformation method. Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 579431, 10 pages. DOI 10.1155/2012/579431 | MR 2914044 | Zbl 1244.65119
[8] Ilicasu, F. O., Schultz, D. H.: High-order finite-difference techniques for linear singular perturbation boundary value problems. Comput. Math. Appl. 47 (2004), 391-417. DOI 10.1016/S0898-1221(04)90033-8 | MR 2048192 | Zbl 1168.76343
[9] Kadalbajoo, M. K., Aggarwal, V. K.: Fitted mesh B-spline collocation method for solving self-adjoint singularly perturbed boundary value problems. Appl. Math. Comput. 161 (2005), 973-987. DOI 10.1016/j.amc.2003.12.078 | MR 2113530 | Zbl 1073.65062
[10] Keller, H. B.: Numerical Methods for Two-Point Boundary Value Problems. Blaisdell Publishing Company, Waltham (1968). MR 0230476 | Zbl 0172.19503
[11] Khuri, S. A., Sayfy, A.: Self-adjoint singularly perturbed boundary value problems: an adaptive variational approach. Math. Methods Appl. Sci. 36 (2013), 1070-1079. DOI 10.1002/mma.2664 | MR 3066728 | Zbl 1290.65064
[12] Lin, T.-C., Schultz, D. H., Zhang, W.: Numerical solutions of linear and nonlinear singular perturbation problems. Comput. Math. Appl. 55 (2008), 2574-2592. DOI 10.1016/j.camwa.2007.09.011 | MR 2416027 | Zbl 1142.65306
[13] Liu, C.-S.: Efficient shooting methods for the second-order ordinary differential equations. CMES, Comput. Model. Eng. Sci. 15 (2006), 69-86. MR 2265974 | Zbl 1152.65453
[14] Liu, C.-S.: The Lie-group shooting method for singularly perturbed two-point boundary value problems. CMES, Comput. Model. Eng. Sci. 15 (2006), 179-196. MR 2269392 | Zbl 1152.65452
[15] Liu, C.-S.: An equilibrated method of fundamental solutions to choose the best source points for the Laplace equation. Eng. Anal. Bound. Elem. 36 (2012), 1235-1245. DOI 10.1016/j.enganabound.2012.03.001 | MR 2913110 | Zbl 1352.65637
[16] Liu, C.-S.: The Lie-group shooting method for solving nonlinear singularly perturbed boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1506-1521. DOI 10.1016/j.cnsns.2011.09.029 | MR 2855443 | Zbl 1244.65113
[17] Liu, C.-S., Li, B.: Reconstructing a second-order Sturm-Liouville operator by an energetic boundary function iterative method. Appl. Math. Lett. 73 (2017), 49-55. DOI 10.1016/j.aml.2017.04.023 | MR 3659907 | Zbl 1375.65100
[18] Liu, C.-S., Liu, D., Jhao, W.-S.: Solving a singular beam equation by using a weak-form integral equation method. Appl. Math. Lett. 64 (2017), 51-58. DOI 10.1016/j.aml.2016.08.010 | MR 3564739 | Zbl 1388.74062
[19] Patidar, K. C.: High order parameter uniform numerical method for singular perturbation problems. Appl. Math. Comput. 188 (2007), 720-733. DOI 10.1016/j.amc.2006.10.040 | MR 2327398 | Zbl 1119.65070
[20] Reddy, Y. N., Chakravarthy, P. Pramod: An initial-value approach for solving singularly perturbed two-point boundary value problems. Appl. Math. Comput. 155 (2004), 95-110. DOI 10.1016/S0096-3003(03)00763-X | MR 2078097 | Zbl 1058.65079
[21] Varner, T. N., Choudhury, S. R.: Non-standard difference schemes for singular perturbation problems revisited. Appl. Math. Comput. 92 (1998), 101-123. DOI 10.1016/S0096-3003(97)10025-X | MR 1625458 | Zbl 0942.65081
[22] Vigo-Aguiar, J., Natesan, S.: An efficient numerical method for singular perturbation problems. J. Comput. Appl. Math. 192 (2006), 132-141. DOI 10.1016/j.cam.2005.04.042 | MR 2226996 | Zbl 1095.65068
Partner of
EuDML logo