Previous |  Up |  Next

Article

Title: Superintegrability and time-dependent integrals (English)
Author: Kubů, Ondřej
Author: Šnobl, Libor
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 309-318
Summary lang: English
.
Category: math
.
Summary: While looking for additional integrals of motion of several minimally superintegrable systems in static electric and magnetic fields, we have realized that in some cases Lie point symmetries of Euler-Lagrange equations imply existence of explicitly time-dependent integrals of motion through Noether’s theorem. These integrals can be combined to get an additional time-independent integral for some values of the parameters of the considered systems, thus implying maximal superintegrability. Even for values of the parameters for which the systems don’t exhibit maximal superintegrability in the usual sense they allow a completely algebraic determination of the trajectories (including their time dependence). (English)
Keyword: integrability
Keyword: superintegrability
Keyword: classical mechanics
Keyword: magnetic field
Keyword: time-dependent integrals
MSC: 37J15
MSC: 37J35
idZBL: Zbl 07144745
idMR: MR4057927
DOI: 10.5817/AM2019-5-309
.
Date available: 2019-12-09T12:23:15Z
Last updated: 2020-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/147943
.
Reference: [1] Crampin, M.: Constants of the motion in Lagrangian mechanics.Internat. J. Theoret. Phys. 16 (10) (1977), 741–754. MR 0502454, 10.1007/BF01807231
Reference: [2] Gubbiotti, G., Nucci, M.C.: Are all classical superintegrable systems in two-dimensional space linearizable?.J. Math. Phys. 58 (1) (2017), 14 pp., 012902. MR 3600036, 10.1063/1.4974264
Reference: [3] Jovanović, B.: Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems.J. Geom. Mech. 10 (2) (2018), 173–187. MR 3808246, 10.3934/jgm.2018006
Reference: [4] Lie, S.: Theorie der Transformationsgruppen, Teil I–III.Leipzig: Teubner, 1888, 1890, 1893.
Reference: [5] López, C., Martínez, E., Rañada, M.F.: Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator.J. Phys. A 32 (7) (1999), 1241–1249. MR 1690665, 10.1088/0305-4470/32/7/013
Reference: [6] Marchesiello, A., Šnobl, L.: Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables.J. Phys. A 50 (24) (2017), 24 pp., 245202. MR 3659131, 10.1088/1751-8121/aa6f68
Reference: [7] Marchesiello, A., Šnobl, L.: An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals.SIGMA Symmetry Integrability Geom. Methods Appl. 14 (092) (2018), 11 pp. MR 3849972
Reference: [8] Mariwalla, K.H.: A complete set of integrals in nonrelativistic mechanics.J. Phys. A 13 (9) (1980), 289–293. MR 0586473, 10.1088/0305-4470/13/9/002
Reference: [9] Nucci, M.C., Leach, P.G.L.: The harmony in the Kepler and related problems.J. Math. Phys. 42 (2) (2001), 746–764. MR 1809250, 10.1063/1.1337614
Reference: [10] Olver, P.J.: Applications of Lie groups to differential equations.Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993, second edition. MR 1240056
Reference: [11] Prince, G.: Toward a classification of dynamical symmetries in Lagrangian systems.Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982, vol. 117, 1983, pp. 687–691. MR 0773518
Reference: [12] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics.SIAM Rev. 23 (4) (1981), 467–494. Zbl 0474.70014, MR 0636081, 10.1137/1023098
Reference: [13] Sarlet, W., Cantrijn, F.: Higher-order Noether symmetries and constants of the motion.J. Phys. A 14 (2) (1981), 479–492. Zbl 0464.58010, MR 0601885, 10.1088/0305-4470/14/2/023
.

Files

Files Size Format View
ArchMathRetro_055-2019-5_5.pdf 519.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo