Previous |  Up |  Next

Article

Title: Close-to-optimal algorithm for rectangular decomposition of 3D shapes (English)
Author: Höschl IV, Cyril
Author: Flusser, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 755-781
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a novel algorithm for a decomposition of 3D binary shapes to rectangular blocks. The aim is to minimize the number of blocks. Theoretically optimal brute-force algorithm is known to be NP-hard and practically infeasible. We introduce its sub-optimal polynomial heuristic approximation, which transforms the decomposition problem onto a graph-theoretical problem. We compare its performance with the state of the art Octree and Delta methods. We show by extensive experiments that the proposed method outperforms the existing ones in terms of the number of blocks on statistically significant level. We also discuss potential applications of the method in image processing. (English)
Keyword: 3D binary object
Keyword: voxels
Keyword: decomposition
Keyword: rectangular blocks
Keyword: sub-optimal algorithm
Keyword: tripartite graph
Keyword: maximum independent set
MSC: 65D18
idZBL: Zbl 07177915
DOI: 10.14736/kyb-2019-5-0755
.
Date available: 2020-01-06T11:20:53Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147950
.
Reference: [1] Berg, M. d., Cheong, O., Kreveld, M. v., Overmars, M.: Computational Geometry: Algorithms and Applications. 3rd Edition..Springer-Verlag TELOS, Santa Clara 2008. MR 2723879, 10.1007/978-3-540-77974-2
Reference: [2] Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph..Commun. ACM 16 (1973), 9, 575-577. 10.1145/362342.362367
Reference: [3] Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications..CRC, 2007. MR 2404093, 10.1201/9781420007299
Reference: [4] Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization..Wiley Series in Discrete Mathematics and Optimization, Wiley 2011. MR 1490579, 10.1002/9781118033142.scard
Reference: [5] Dai, M., Baylou, P., Najim, M.: An efficient algorithm for computation of shape moments from run-length codes or chain codes..Pattern Recognition 25 (1992), 10, 1119-1128. 10.1016/0031-3203(92)90015-b
Reference: [6] Dielissen, V. J., Kaldewaij, A.: Rectangular partition is polynomial in two dimensions but np-complete in three..Inform. Process. Lett. 38 (1991), 1, 1-6. MR 1103693, 10.1016/0020-0190(91)90207-x
Reference: [7] Dinic, E. A.: Algorithm for solution of a problem of maximum flow in a network with power estimation..Soviet Math. Doklady 11 (1970), 1277-1280. MR 0287976
Reference: [8] Edmonds, J., Karp, R. M.: Theoretical improvements in algorithmic efficiency for network flow problems..J. Assoc. Comput. Machinery 19 (1972) 2, 248-264. MR 0266680, 10.1145/321694.321699
Reference: [9] Eppstein, D.: Graph-theoretic solutions to computational geometry problems..In: 35th International Workshop on Graph-Theoretic Concepts in Computer Science WG'09, Vol. LNCS 5911, Springer, 2009, pp. 1-16. MR 2587695, 10.1007/978-3-642-11409-0_1
Reference: [10] Ferrari, L., Sankar, P. V., Sklansky, J.: Minimal rectangular partitions of digitized blobs..Computer Vision, Graphics, Image Process. 28 (1984), 1, 58-71. 10.1016/0734-189x(84)90139-7
Reference: [11] Flusser, J.: An adaptive method for image registration..Pattern Recognition 25 (1992), 1, 45-54. 10.1016/0031-3203(92)90005-4
Reference: [12] Flusser, J.: Refined moment calculation using image block representation..IEEE Trans. Image Process. 9 (2000), 11, 1977-1978. MR 1818456, 10.1109/83.877219
Reference: [13] Flusser, J., Suk, T., Zitová, B.: 2D and 3D Image Analysis by Moments..Wiley, 2016. 10.1002/9781119039402
Reference: [14] Goldberg, A. V., Rao, S.: Beyond the flow decomposition barrier..J. Assoc. Comput. Machinery 45 (1998), 5, 783-797. MR 1668151, 10.1145/290179.290181
Reference: [15] Goldberg, A. V., Tarjan, R. E.: A new approach to the maximum-flow problem..J. Assoc. Comput. Machinery 35 (1988), 4, 921-940. MR 1072405, 10.1145/48014.61051
Reference: [16] Gourley, K. D., Green, D. M.: A polygon-to-rectangle conversion algorithm..IEEE Computer Graphics Appl. 3 (1983) 1, 31-36. 10.1109/mcg.1983.262975
Reference: [17] Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems..SIAM J. Comput. 15 (1986), 2, 478-494. MR 0837597, 10.1137/0215033
Reference: [18] Jain, A., Thormählen, T., Ritschel, T., Seidel, H.-P.: Exploring shape variations by 3d-model decomposition and part-based recombination..Computer Graphics Forum 31 (2012), (2pt3), 631-640. 10.1111/j.1467-8659.2012.03042.x
Reference: [19] Kawaguchi, E., Endo, T.: On a method of binary-picture representation and its application to data compression..IEEE Trans. Pattern Analysis Machine Intell. 2 (1980), 1, 27-35. 10.1109/tpami.1980.4766967
Reference: [20] Keil, J. M.: Polygon decomposition..In: Handbook of Computational Geometry, Elsevier, 2000, pp. 491-518. MR 1746683, 10.1016/b978-044482537-7/50012-7
Reference: [21] Levin, A., Fergus, R., Durand, F., Freeman, W. T.: Image and depth from a conventional camera with a coded aperture..In: Special Interest Group on Computer Graphics and Interactive Techniques Conference SIGGRAPH'07, ACM, New York 2007. 10.1145/1275808.1276464
Reference: [22] Li, B. C.: A new computation of geometric moments..Pattern Recognition 26 (1993), 1, 109-113. MR 1354114, 10.1016/0031-3203(93)90092-b
Reference: [23] Liou, W., Tan, J., Lee, R.: Minimum partitioning simple rectilinear polygons in $O(n \log \log n)-$time..In: Proc. Fifth Annual ACM symposium on Computational Geometry SoCG'89, ACM, New York 1989, pp. 344-353. 10.1145/73833.73871
Reference: [24] Jr., W. Lipski, Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional data organization II..In: Fundamenta Informaticae, Vol. II of Annales Societatis Mathematicae Polonae, Series IV, 1979, pp. 245-260. MR 0573990, 10.1007/978-1-4613-9323-8_18
Reference: [25] Marchand-Maillet, S., Sharaiha, Y. M.: Binary Digital Image Processing: A Discrete Approach..Academic Press, 1999. MR 1734820, 10.1016/b978-012470505-0/50007-1
Reference: [26] Meagher, D.: Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-d Objects by Computer..Tech. Rep. IPL-TR-80-111, Rensselaer Polytechnic Institute 1980.
Reference: [27] Murali, T. M., Agarwal, P. K., Vitter, J. S.: Constructing binary space partitions for orthogonal rectangles in practice..In: Proc. 6th Annual European Symposium on Algorithms, ESA '98, Springer-Verlag, London 1998, pp. 211-222. MR 1683364, 10.1007/3-540-68530-8_18
Reference: [28] Neal, F. B., Russ, J. C.: Measuring Shape..CRC Pres, 2012. 10.1201/b12092
Reference: [29] Ohtsuki, T.: Minimum dissection of rectilinear regions..In: Proc. IEEE International Conference on Circuits and Systems ISCAS'82, IEEE, 1982, pp. 1210-1213.
Reference: [30] Papakostas, G. A., Karakasis, E. G., Koulouriotis, D. E.: Efficient and accurate computation of geometric moments on gray-scale images..Pattern Recognition 41 (2008), 6, 1895-1904. 10.1016/j.patcog.2007.11.015
Reference: [31] Ren, Z., Yuan, J., Liu, W.: Minimum near-convex shape decomposition..IEEE Trans. on Pattern Analysis and Machine Intelligence 35 (2013), 2546-2552. 10.1109/tpami.2013.67
Reference: [32] Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark..In: Proc. Shape Modelling Applications, 2004. 10.1109/smi.2004.1314504
Reference: [33] Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-d models using medial surfaces..Mach. Vision Appl. 19 (2008), 4, 261-275. 10.1007/s00138-007-0097-8
Reference: [34] Sivignon, I., Coeurjolly, D.: Minimum decomposition of a digital surface into digital plane segments is NP-hard..Discrete Appl. Math. 157 (2009), 3, 558-570. MR 2479146, 10.1016/j.dam.2008.05.028
Reference: [35] Sossa-Azuela, J. H., Yáñez-Márquez, C., Santiago, J. L. Díaz de León: Computing geometric moments using morphological erosion..Pattern Recognition 34 (2001), 2, 271-276. 10.1016/s0031-3203(99)00213-7
Reference: [36] Spiliotis, I. M., Boutalis, Y. S.: Parameterized real-time moment computation on gray images using block techniques..J. Real-Time Image Process. 6 (2011), 2, 81-91. 10.1007/s11554-009-0142-0
Reference: [37] Spiliotis, I. M., Mertzios, B. G.: Real-time computation of two-dimensional moments on binary images using image block representation..IEEE Trans. Image Process. 7 (1998), 11, 1609-1615. 10.1109/83.725368
Reference: [38] Suk, T., Flusser, J.: Refined morphological methods of moment computation..In: 20th International Conference on Pattern Recognition ICPR'10, IEEE Computer Society, 2010, pp. 966-970. 10.1109/icpr.2010.242
Reference: [39] Suk, T., Höschl, C. IV, Flusser, J.: Decomposition of binary images – A survey and comparison..Pattern Recognition 45 (2012), 12, 4279-4291. 10.1016/j.patcog.2012.05.012
Reference: [40] Wu, C.-H., Horng, S.-J., Lee, P.-Z.: A new computation of shape moments via quadtree decomposition..Pattern Recognition 34 (2001), 7, 1319-1330. 10.1016/s0031-3203(00)00100-x
Reference: [41] Zakaria, M. F., Vroomen, L. J., Zsombor-Murray, P., Kessel, J. M. van: Fast algorithm for the computation of moment invariants..Pattern Recognition 20 (1987), 6, 639-643. 10.1016/0031-3203(87)90033-1
Reference: [42] Zhou, Y., Yin, K., Huang, H., Zhang, H., Gong, M., Cohen-Or, D.: Generalized cylinder decomposition..ACM Trans. Graph. 34 (2015) 6, 171:1-171:14. 10.1145/2816795.2818074
.

Files

Files Size Format View
Kybernetika_55-2019-5_1.pdf 5.209Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo