Previous |  Up |  Next

Article

Keywords:
periodic solution; $D$ operator; existence; stability
Summary:
The problems related to periodic solutions of cellular neural networks (CNNs) involving $D$ operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.
References:
[1] Aouiti, C., all., I. B. Gharbia at: Dynamics of impulsive neutral-type BAM neural networks. J. Franklin Inst. 356 (2019), 2294-2324. DOI 10.1016/j.jfranklin.2019.01.028 | MR 3925987
[2] Arik, S.: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays. J. Franklin Inst. 356 (2019), 276-291. DOI 10.1016/j.jfranklin.2018.11.002 | MR 3906098
[3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.: Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. J. Integr. Neurosci. 17 (2018), 391-411. DOI 10.3233/jin-180075
[4] Barbalat, I.: Systems d'equations differential d'oscillationsn onlinearities. Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270. MR 0111896
[5] Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay. Mediterr. J. Math. 15 (2018), 134-153. DOI 10.1007/s00009-018-1184-y | MR 3808561
[6] Chua, L., Yang, L.: Cellular neural networks: application. IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290. DOI 10.1109/31.7601 | MR 0960778
[7] Dharani, S., Rakkiyappan, R., Cao, J.: New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing 151 (2015), 827-834. DOI 10.1016/j.neucom.2014.10.014
[8] Ding, H., Liang, J., Xiao, T.: Existence of almost periodic solutions for SICNNs with time-varying delays. Physics Lett. A 372 (2008), 5411-5416. DOI 10.1016/j.physleta.2008.06.042 | MR 2438234
[9] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin 1977. DOI 10.1007/bfb0089538 | MR 0637067
[10] Gang, Y.: New results on the stability of fuzzy cellular neural networks with time-varying leakage delays. Neural Computing Appl. 25 (2014), 1709-1715. DOI 10.1007/s00521-014-1662-5 | MR 2907168
[11] Guan, K.: Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control. Neurocomputing 283 (2018), 256-265. DOI 10.1016/j.neucom.2018.01.027
[12] Guo, R., Ge, W., all., Z. Zhang at: Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays. Int. J. Control, Automat. Systems 17 (2019), 3, 801-809. DOI 10.1007/s12555-018-0542-7
[13] Huang, Z.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331. DOI 10.1007/s13042-016-0507-1
[14] Li, Y., Li, B., Yao, S., Xiong, L.: The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay. Neurocomputing 303 (2018), 75-87. DOI 10.1016/j.neucom.2018.04.044
[15] Li, X., Huang, L., Zhou, H.: Global stability of cellular neural networks with constant and variable delays. Nonlinear Anal. TMA 53 (2003), 319-333. DOI 10.1016/s0362-546x(02)00176-1 | MR 1964329
[16] Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Math. Methods App. Sci. 40 (2017), 167-174. DOI 10.1002/mma.3976 | MR 3583044
[17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.: New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components. Cognit. Neurodyn. 10 (2016), 6, 543-562. DOI 10.1007/s11571-016-9396-y
[18] Ozcan, N.: Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case. Neural Networks 113 (2019), 20-27. DOI 10.1016/j.neunet.2019.01.017
[19] Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays. Neurocomputing 71 (2008), 1039-1045. DOI 10.1016/j.neucom.2007.11.002 | MR 2458370
[20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.: Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay. Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900. DOI 10.1007/s12555-016-9483-1
[21] all., R. Saml et: Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type. Neural Networks 116 (2019), 198-207. DOI 10.1016/j.neunet.2019.04.023
[22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352 (2015), 1, 155-176. DOI 10.1016/j.jfranklin.2014.10.005 | MR 3292322
[23] Singh, V.: Improved global robust stability criterion for delayed neural networks. Chao. Solit. Fract. 31 (2007), 224-229. DOI 10.1016/j.chaos.2005.09.050 | MR 2263282
[24] Singh, V.: On global robust stability of interval Hopfield neural networks with delay. Chao. Solit. Fract. 33 (2007), 1183-1188. DOI 10.1016/j.chaos.2006.01.121 | MR 2318906
[25] Xiao, S.: Global exponential convergence of HCNNs with neutral type proportional delays and D operator. Neural Process. Lett. 49 (2019), 347-356. DOI 10.1007/s11063-018-9817-5
[26] Xin, Y., Cheng, Z. B.: Neutral operator with variable parameter and third-order neutral differential equation. Adv. Diff. Equ. 273 (2014), 1-18. DOI 10.1186/1687-1847-2014-273 | MR 3359150
[27] Yao, L.: Global convergence of CNNs with neutral type delays and D operator. Neural Comput. Appl. 29 (2018), 105-109. DOI 10.1007/s00521-016-2403-8
[28] Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays. Math. Methods Appl. Sci. 39 (2016), 4520-4525. DOI 10.1002/mma.3880 | MR 3549409
[29] Yu, Y.: Global exponential convergence for a class of HCNNs with neutral time-proportional delays. Appl. Math. Comput. 285 (2016), 1-7. DOI 10.1016/j.amc.2016.03.018 | MR 3494408
[30] Zhang, X., Han, Q.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks 54 (2014), 57-69. DOI 10.1016/j.neunet.2014.02.012
[31] Zhang, X., Han, Q.: Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans. Cybernetics 47 (2017), 3184-3194. DOI 10.1109/tcyb.2017.2690676
[32] Zhang, X., Han, Q., Wang, L.: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329. DOI 10.1109/tnnls.2018.2797279 | MR 3867847
[33] Zhang, X., Han, Q., Zeng, Z.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernetics 48 (2018), 1660-1671. DOI 10.1109/tcyb.2017.2776283
[34] Zhang, H., all., T. Ma et: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844. DOI 10.1109/tsmcb.2009.2030506 | MR 2904149
[35] Zhang, H., Qiu, Z., Xiong, L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406. DOI 10.1016/j.neucom.2018.12.028
[36] Zheng, M., all., L. Li et: Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291. DOI 10.1016/j.cnsns.2017.11.025 | MR 3758388
[37] Zhou, Q.: Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays. Asian J. Control 19 (2017), 1557-1563. DOI 10.1002/asjc.1468 | MR 3685941
[38] Zhou, Q., Shao, J.: Weighted pseudo-anti-periodic SICNNs with mixed delays. Neural Computing Appl. 29 (2018), 272-291. DOI 10.1007/s00521-016-2582-3
Partner of
EuDML logo