[3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.:
Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. J. Integr. Neurosci. 17 (2018), 391-411.
DOI 10.3233/jin-180075
[4] Barbalat, I.:
Systems d'equations differential d'oscillationsn onlinearities. Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270.
MR 0111896
[5] Cheng, Z., Li, F.:
Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay. Mediterr. J. Math. 15 (2018), 134-153.
DOI 10.1007/s00009-018-1184-y |
MR 3808561
[6] Chua, L., Yang, L.:
Cellular neural networks: application. IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290.
DOI 10.1109/31.7601 |
MR 0960778
[7] Dharani, S., Rakkiyappan, R., Cao, J.:
New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing 151 (2015), 827-834.
DOI 10.1016/j.neucom.2014.10.014
[10] Gang, Y.:
New results on the stability of fuzzy cellular neural networks with time-varying leakage delays. Neural Computing Appl. 25 (2014), 1709-1715.
DOI 10.1007/s00521-014-1662-5 |
MR 2907168
[11] Guan, K.:
Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control. Neurocomputing 283 (2018), 256-265.
DOI 10.1016/j.neucom.2018.01.027
[12] Guo, R., Ge, W., all., Z. Zhang at:
Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays. Int. J. Control, Automat. Systems 17 (2019), 3, 801-809.
DOI 10.1007/s12555-018-0542-7
[13] Huang, Z.:
Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331.
DOI 10.1007/s13042-016-0507-1
[14] Li, Y., Li, B., Yao, S., Xiong, L.:
The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay. Neurocomputing 303 (2018), 75-87.
DOI 10.1016/j.neucom.2018.04.044
[16] Liu, B.:
Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Math. Methods App. Sci. 40 (2017), 167-174.
DOI 10.1002/mma.3976 |
MR 3583044
[17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.:
New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components. Cognit. Neurodyn. 10 (2016), 6, 543-562.
DOI 10.1007/s11571-016-9396-y
[18] Ozcan, N.:
Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case. Neural Networks 113 (2019), 20-27.
DOI 10.1016/j.neunet.2019.01.017
[19] Rakkiyappan, R., Balasubramaniam, P.:
New global exponential stability results for neutral type neural networks with distributed time delays. Neurocomputing 71 (2008), 1039-1045.
DOI 10.1016/j.neucom.2007.11.002 |
MR 2458370
[20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.:
Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay. Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900.
DOI 10.1007/s12555-016-9483-1
[21] all., R. Saml et:
Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type. Neural Networks 116 (2019), 198-207.
DOI 10.1016/j.neunet.2019.04.023
[22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.:
New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352 (2015), 1, 155-176.
DOI 10.1016/j.jfranklin.2014.10.005 |
MR 3292322
[25] Xiao, S.:
Global exponential convergence of HCNNs with neutral type proportional delays and D operator. Neural Process. Lett. 49 (2019), 347-356.
DOI 10.1007/s11063-018-9817-5
[27] Yao, L.:
Global convergence of CNNs with neutral type delays and D operator. Neural Comput. Appl. 29 (2018), 105-109.
DOI 10.1007/s00521-016-2403-8
[28] Yu, Y.:
Global exponential convergence for a class of neutral functional differential equations with proportional delays. Math. Methods Appl. Sci. 39 (2016), 4520-4525.
DOI 10.1002/mma.3880 |
MR 3549409
[30] Zhang, X., Han, Q.:
Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks 54 (2014), 57-69.
DOI 10.1016/j.neunet.2014.02.012
[31] Zhang, X., Han, Q.:
Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans. Cybernetics 47 (2017), 3184-3194.
DOI 10.1109/tcyb.2017.2690676
[32] Zhang, X., Han, Q., Wang, L.:
Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329.
DOI 10.1109/tnnls.2018.2797279 |
MR 3867847
[33] Zhang, X., Han, Q., Zeng, Z.:
Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernetics 48 (2018), 1660-1671.
DOI 10.1109/tcyb.2017.2776283
[34] Zhang, H., all., T. Ma et:
Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844.
DOI 10.1109/tsmcb.2009.2030506 |
MR 2904149
[35] Zhang, H., Qiu, Z., Xiong, L.:
Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406.
DOI 10.1016/j.neucom.2018.12.028
[36] Zheng, M., all., L. Li et:
Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291.
DOI 10.1016/j.cnsns.2017.11.025 |
MR 3758388
[37] Zhou, Q.:
Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays. Asian J. Control 19 (2017), 1557-1563.
DOI 10.1002/asjc.1468 |
MR 3685941
[38] Zhou, Q., Shao, J.:
Weighted pseudo-anti-periodic SICNNs with mixed delays. Neural Computing Appl. 29 (2018), 272-291.
DOI 10.1007/s00521-016-2582-3