Previous |  Up |  Next

Article

Title: A Dieudonné theorem for lattice group-valued measures (English)
Author: Barbieri, Giuseppina
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 870-878
Summary lang: English
.
Category: math
.
Summary: A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case. (English)
Keyword: effect algebra
Keyword: Dieudonné theorem
Keyword: modular measures
Keyword: lattice group
MSC: 28A12
MSC: 28A33
MSC: 28B15
idZBL: Zbl 07177921
idMR: MR4055581
DOI: 10.14736/kyb-2019-5-0870
.
Date available: 2020-01-06T11:22:38Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147956
.
Reference: [1] Avallone, A.: Separating points of measures on effect algebras..Mathematica Slovaca 20 (2006), 203-214. MR 2357812
Reference: [2] Avallone, A.: Cafiero and Nikodym boundedness theorem in effect algebras..Ital. J. Pure Appl. Math. 57 (2007), 2, 129-140. MR 2247423
Reference: [3] Barbieri, G.: On the Dieudonné theorem..Sci. Math. Japon. 70 (2009), 3, 279-284. MR 2562049
Reference: [4] Bennett, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday..Found. Phys. 24 (1994), 10, 1331-1352. MR 1304942, 10.1007/bf02283036
Reference: [5] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces..Tatra Mountains Math. Publ. 8 (1996), 9-42. MR 1475257
Reference: [6] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in (l)-groups..Kybernetika 46 (2010), 6, 1049-1060. MR 2797426
Reference: [7] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions..Mediterr. J. Math. 4 (2018), Art. 174, 20 pp. MR 3825621, 10.1007/s00009-018-1222-9
Reference: [8] Butnariu, D., Klement, E. P.: Triangular norm-based measures and games with fuzzy coalitions..Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, 10. Kluwer Academic Publishers Group, Dordrecht 1993. MR 2867321, 10.1007/978-94-017-3602-2
Reference: [9] Chovanec, F., Kopka, F.: D-posets..Math. Slovaca 44 (1994), 1, 21-34. MR 1290269
Reference: [10] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures..Kluwer Academic Publishers, Bratislava 2000. Zbl 0987.81005, MR 1861369, 10.1007/978-94-017-2422-7_1
Reference: [11] Epstein, L. G., Zhang, J.: Subjective probabilities on subjectively unambiguous events..Econometrica 69 (2001), 2, 265-306. MR 1819756, 10.1111/1468-0262.00193
Reference: [12] Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice..Bull. Acad. Polon. Sci. Sci. Math. 28 (1980), 11-12, 549-556. MR 0628641
Reference: [13] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem..J. London Math. Soc. 11 (1975), 2, 276-284. MR 0380345, 10.1112/jlms/s2-11.3.276
Reference: [14] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering..Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislavia 1997. Zbl 0916.28001, MR 1489521, 10.1007/978-94-015-8919-2
.

Files

Files Size Format View
Kybernetika_55-2019-5_7.pdf 425.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo