Previous |  Up |  Next

Article

Title: Inverse optimal control for linearizable nonlinear systems with input delays (English)
Author: Cai, Xiushan
Author: Wu, Jie
Author: Zhan, Xisheng
Author: Zhang, Xianhe
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 727-739
Summary lang: English
.
Category: math
.
Summary: We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method. (English)
Keyword: nonlinear systems
Keyword: inverse optimality
Keyword: predictor control
Keyword: input delays
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 07177913
idMR: MR4043545
DOI: 10.14736/kyb-2019-4-0727
.
Date available: 2020-01-10T14:22:58Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147966
.
Reference: [1] Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems..J. Dynamic Systems, Measurement Control 134 (2012), 1-14. MR 3270960, 10.1115/1.4005278
Reference: [2] Bekiaris-Liberis, N., Krstic, M.: Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations..Automatica 49 (2013), 1576-1590. MR 3049207, 10.1016/j.automatica.2013.02.050
Reference: [3] Bekiaris-Liberis, N., Krstic, M.: Compensation of wave actuator dynamics for nonlinear systems..IEEE Trans. Automat. Control 59 (2014), 1555-1570. MR 3225229, 10.1109/tac.2014.2309057
Reference: [4] Bullo, F., Lewis, A.: Reduction, linearization, and stability of relative equilibria for mechanical systems on riemannian manifolds..Acta Applicandae Mathematicae 99 (2007), 53-95. MR 2346219, 10.1007/s10440-007-9155-5
Reference: [5] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks..IEEE Trans. Automat. Control 63 (2018), 233-240. MR 3744842, 10.1109/tac.2017.2722104
Reference: [6] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems..Automatica 103 (2019), 549-557. MR 3920865, 10.1016/j.automatica.2019.02.038
Reference: [7] Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary..Int. J. Robust. Nonlinear Control 25 (2015), 222-253. Zbl 1305.93167, MR 3293094, 10.1002/rnc.3083
Reference: [8] Cai, X., Krstic, M.: Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary..Automatica 68 (2016), 27-38. MR 3483665, 10.1016/j.automatica.2016.01.043
Reference: [9] Cai, X., Liao, L., Zhang, J., Zhang, W.: Oberver design for a class of nonlinear system in cascade with counter-convecting transport dynamics..Kybernetika 52 (2016), 76-88. MR 3482612, 10.14736/kyb-2016-1-0076
Reference: [10] Cai, X., Lin, Y., Liu, L.: Universal stabilisation design for a class of non-linear systems with time-varying input delays..IET Control Theory Appl. 9 (2015), 1481-1490. MR 3381705, 10.1049/iet-cta.2014.1085
Reference: [11] Cai, X., Lin, C., Liu, L., Zhan, X.: Inverse optimal control for strict-feedforward nonlinear systems with input delays..Int. J. Robust. Nonlinear Control 28 (2018), 2976-2995. MR 3790292, 10.1002/rnc.4062
Reference: [12] Jankovic, M.: Control Lyapunov Razumikhin functions and robust stabilization of time delay systems..IEEE Trans. Automat. Control 46 (2001), 1048-1060. MR 1842138, 10.1109/9.935057
Reference: [13] Jankovic, M.: Control of nonlinear systems with time delay..In: Proc. 42nd IEEE conference on Decision and Control, Maui 2003, pp. 4545-4550. 10.1109/cdc.2003.1272267
Reference: [14] Karafyllis, I., Krstic, M.: Predictor Feedback for Delay Systems: Implementations and Approximations..Springer, 2016. MR 3618118, 10.1007/978-3-319-42378-4
Reference: [15] Krstic, M.: Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems..IEEE Trans. Automat. Control 49 (2004), 1668-1681. MR 2091318, 10.1109/tac.2004.835361
Reference: [16] Krstic, M.: Integrator forwarding control laws for some classes of linearizable feedforward systems..In: Proc. American Control Conference, Boston, Massachusetts 2004, 4360-4365. 10.23919/acc.2004.1383994
Reference: [17] Krstic, M.: Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch..Automatica 44 (2008), 2930-2935. MR 2527218, 10.1016/j.automatica.2008.04.010
Reference: [18] Krstic, M.: Input delay compensation for forward complete and feed forward nonlinear systems..IEEE Trans. Automat. Control 55 (2010), 287-303. MR 2604408, 10.1109/tac.2009.2034923
Reference: [19] Krstic, M., Li, Z.: Inverse optimal design of input-to-state stabilizing nonlinear controllers..IEEE Trans. Automat. Control 43 (1998), 336-350. MR 1614799, 10.1109/9.661589
Reference: [20] Respondek, W., Ricardo, S.: On linearization of mechanical control systems..In: Proc. 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro 2012. 10.3182/20120829-3-it-4022.00053
Reference: [21] Tall, I.: Linearizable feedforward systems: A special class..In: Proc. IEEE Multi-conference on Systems and Control, Texas 2008. MR 2675842, 10.1109/cca.2008.4629662
Reference: [22] Schaft, A. van der: Linearization of Hamiltonian and gradient systems..IMA J. Math. Control Inform. 1 (1994), 185-198. 10.1093/imamci/1.2.185
Reference: [23] Zhan, X., Cheng, L., Wu, J., Yang, Q.: Optimal modified performance of MIMO networked control systems with multi-parameter constraints..ISA Trans. 84 (2019), 111-117. 10.1016/j.isatra.2018.09.018
Reference: [24] Zhan, X., Z.Guan, Zhang, X., Yuan, F.: Optimal tracking performance and design of networked control systems with packet dropout..J. the Franklin Inst. 350 (2013), 3205-3216. MR 3123414, 10.1016/j.jfranklin.2013.06.019
Reference: [25] Zhan, X., Wu, J., Jiang, T., Jiang, X.: Optimal performance of networked control systems under the packet dropouts and channel noise..ISA Trans. 58 (2015), 214-221. 10.1016/j.isatra.2015.05.012
Reference: [26] Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity..IEEE Trans. Automatic Control 59 (2014), 1336-1341. MR 3214223, 10.1109/tac.2013.2289704
Reference: [27] Zhang, Z., Xu, S., Zhang, B.: Exact tracking control of nonlinear systems with time delays and dead-zone input..Automatica 52 (2015), 272-276. MR 3310841, 10.1016/j.automatica.2014.11.013
.

Files

Files Size Format View
Kybernetika_55-2019-4_8.pdf 905.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo