[1] Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: 
Hadamard-type fractional differential equations, inclusions and inequalities. 2017, Springer International Publishing,  
MR 3616285[2] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.: 
A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdélyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions. Math. Model. Anal., 22, 2, 2017, 121-139,  
DOI 10.3846/13926292.2017.1274920 | 
MR 3625429[3] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.: 
Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdélyi-Kober Type Integral Boundary Conditions. Filomat, 31, 14, 2017, 4515-4529,  
DOI 10.2298/FIL1714515A | 
MR 3730375[4] Agarwal, R.P., O'Regan, D.: 
Infinite Interval Problems for Differential, Difference and Integral Equations. 2001, Kluwer Academic, Dordrecht,  
MR 1845855 | 
Zbl 0988.34002[5] Bartle, R.G.: 
A modern theory of integration. 32, 2001, Amer. Math. Soc., Providence, Rhode Island,  
MR 1817647[6] Corduneanu, C.: 
Integral Equations and Stability of Feedback Systems. 1973, Academic Press, New York,  
MR 0358245 | 
Zbl 0273.45001[7] Das, S.: 
Functional Fractional Calculus for System Identification and Controls. 2008, Springer-Verlag Berlin Heidelberg,  
MR 2414740[8] Diethelm, K.: 
The Analysis of Fractional Differential Equations. 2010, Springer, Berlin,  
MR 2680847 | 
Zbl 1215.34001[9] Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: 
Theory and Applications of Fractional Differential Equations. 2006, Elsevier Science B.V, Amsterdam,  
MR 2218073 | 
Zbl 1092.45003[10] Kiryakova, V.: 
A brief story about the operators of the generalized fractional calculus. Frac. Calc. Appl. Anal., 11, 2, 2008, 203-220,  
MR 2401328[11] Kiryakova, V.: 
Generalized Fractional Calculus and Applications. 1994, Longman and John Wiley, New York,  
MR 1265940[12] Kiryakova, V., Luchko, Y.: Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys., 11, 10, 2013, 1314-1336, 
[13] Liu, X., Jia, M.: 
Multiple solutions of nonlocal boundary value problems for fractional differential equations on half-line. Electron. J. Qual. Theory Differ. Equ., 56, 1-14. 
MR 2825141[14] Luchko, Y.: 
Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal., 7, 3, 2007, 339-364,  
MR 2252570[15] Luchko, Y., Trujillo, J.: 
Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal., 10, 3, 2007, 249-267,  
MR 2382781[16] Maagli, H., Dhifli, A.: 
Positive solutions to a nonlinear fractional Dirichlet problem on the half-space. Electron. J. Differ. Equ., 50, 2014, 1-7,  
MR 3177559[17] Mathai, A.M., Haubold, H.J.: 
Erdélyi-Kober Fractional Calculus. 2018, Springer Nature, Singapore Pte Ltd,  
MR 3838388[18] Ntouyas, S.K.: 
Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opuscula Math., 33, 1, 2013, 117-138,  
DOI 10.7494/OpMath.2013.33.1.117 | 
MR 3008027[20] Podlubny, I.: 
Fractional Differential Equations, Mathematics in Science and Engineering. 1999, Academic Press, New York,  
MR 1658022[21] Sabatier, J., Agrawal, O.P., Machado, J.A. Tenreiro: 
Advances in Fractional Calculus Theoretical Developments and Applicationsin Physics and Engineering. 2007, Springer,  
MR 2432163[22] Samko, S.G., Kilbas, A.A., Marichev, O.I.: 
Fractional Integral and Derivatives Theory and Applications. 1993, Gordon and Breach, Switzerland,  
MR 1347689[23] A1-Saqabi, B., Kiryakova, V.S.: 
Explicit solutions of fractional integral and differential equations involving Erdé1yi-Kober operators. Appl. Math. Comput., 95, 1998, 1-13,  
MR 1630272[24] Sneddon, I.N.: 
Mixed Boundary Value Problems in Potential Theory. 1966, North-Holland Publ., Amsterdam,  
MR 0216018[25] Sneddon, I.N.: 
The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications. Lect Notes Math, 457, 1975, 37-79, Springer-Verlag, New York,  
DOI 10.1007/BFb0067097 | 
MR 0487301[26] Sneddon, I.N.: 
The Use of Operators of Fractional Integration in Applied Mathematics. 1979, RWN Polish Sci. Publ., Warszawa-Poznan,  
MR 0604924[27] Sun, Q., Meng, S., Cu, Y.: 
Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance. Adv. Difference Equ., 2018, 243,  
MR 3829286[28] Yan, B., Liu, Y.: 
Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line. Appl. Math. Comput., 147, 3, 2004, 629-644,  
MR 2011077 | 
Zbl 1045.34009[29] Yan, B., O'Regan, D., Agarwal, and R.P.: 
Unbounded solutions for singular boundary value problems on the semi-infinite interval Upper and lower solutions and multiplicity. Int. J. Comput. Appl. Math., 197, 2, 2006, 365-386,  
MR 2260412[31] Zhao, X., Ge, W.: 
Existence of at least three positive solutions for multi-point boundary value problem on infinite intervals with p-Laplacian operator. J. Appl. Math. Comput., 28, 1, 2008, 391-403,  
DOI 10.1007/s12190-008-0113-9 | 
MR 2430946