Previous |  Up |  Next

Article

Title: Oscillation in deviating differential equations using an iterative method (English)
Author: Chatzarakis, George E.
Author: Jadlovská, Irena
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 27
Issue: 2
Year: 2019
Pages: 143-169
Summary lang: English
.
Category: math
.
Summary: Sufficient oscillation conditions involving $\limsup $ and $\liminf $ for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones. (English)
Keyword: differential equation
Keyword: non-monotone argument
Keyword: oscillatory solution
Keyword: nonoscillatory solution
Keyword: Grönwall inequality.
MSC: 34K06
MSC: 34K11
idZBL: Zbl 1464.34088
idMR: MR4058171
.
Date available: 2020-02-20T09:00:02Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147987
.
Reference: [1] Braverman, E., Chatzarakis, G.E., Stavroulakis, I.P.: Iterative oscillation tests for differential equations with several non-monotone arguments.Adv. Difference Equ., 87, 2016, MR 3479781
Reference: [2] Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays.Appl. Math. Comput., 218, 7, 2011, 3880-3887, MR 2851485
Reference: [3] Chatzarakis, G.E.: Differential equations with non-monotone arguments: Iterative Oscillation results.J. Math. Comput. Sci., 6, 5, 2016, 953-964,
Reference: [4] Chatzarakis, G.E.: On oscillation of differential equations with non-monotone deviating arguments.Mediterr. J. Math., 14, 2, 2017, 82, MR 3620160, 10.1007/s00009-017-0883-0
Reference: [5] Chatzarakis, G.E., Jadlovská, I.: Improved iterative oscillation tests for firs-order deviating differential equations.Opuscula Math., 38, 3, 2018, 327-356, MR 3781617, 10.7494/OpMath.2018.38.3.327
Reference: [6] Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with non-monotone arguments.Complexity, 2018, 2018, 1-18, Article ID 8237634.. MR 3620160, 10.1155/2018/8237634
Reference: [7] Chatzarakis, G.E., Öcalan, Ö.: Oscillations of differential equations with several non-monotone advanced arguments.Dynamical Systems, 30, 3, 2015, 310-323, MR 3373715, 10.1080/14689367.2015.1036007
Reference: [8] Erbe, L.H., Kong, Qingkai, Zhang, B.G.: Oscillation Theory for Functional Differential Equations.1995, Monographs and Textbooks in Pure and Applied Mathematics, 190. Marcel Dekker, Inc., New York, MR 1309905
Reference: [9] Erbe, L.H., Zhang, B.G.: Oscillation of first order linear differential equations with deviating arguments.Differential Integral Equations, 1, 3, 1988, 305-314, MR 0929918
Reference: [10] Fukagai, N., Kusano, T.: Oscillation theory of first order functional-differential equations with deviating arguments.Ann. Mat. Pura Appl., 136, 1, 1984, 95-117, Zbl 0552.34062, MR 0765918, 10.1007/BF01773379
Reference: [11] Jaro¹, J., Stavroulakis, I.P.: Oscillation tests for delay equations.Rocky Mountain J. Math., 29, 1, 1999, 197-207, MR 1687662, 10.1216/rmjm/1181071686
Reference: [12] Jian, C.: On the oscillation of linear differential equations with deviating arguments.Math. in Practice and Theory, 1, 1, 1991, 32-40, MR 1107456
Reference: [13] Kon, M., Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for delay equations.Proc. Amer. Math. Soc., 128, 10, 2000, 2989-2998, MR 1694869, 10.1090/S0002-9939-00-05530-1
Reference: [14] Koplatadze, R.G., Chanturija, T.A.: Oscillating and monotone solutions of first-order differential equations with deviating argument.Differentsiaµnye Uravneniya, 18, 8, 1982, 1463-1465, (in Russian). MR 0671174
Reference: [15] Koplatadze, R.G., Kvinikadze, G.: On the oscillation of solutions of first order delay differential inequalities and equations.Georgian Math. J., 1, 6, 1994, 675-685, MR 1296574, 10.1007/BF02254685
Reference: [16] Kwong, M.K.: Oscillation of first-order delay equations.J. Math. Anal. Appl., 156, 1, 1991, 274-286, MR 1102611, 10.1016/0022-247X(91)90396-H
Reference: [17] Ladas, G., Lakshmikantham, V., Papadakis, L.S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments.Delay and functional differential equations and their applications, 1972, 219-231, Academic Press, MR 0387776
Reference: [18] Ladde, G.S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations.Atti Acad. Naz. Lincei Rendiconti, 63, 5, 1977, 351-359, MR 0548601
Reference: [19] Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments.1987, Monographs and Textbooks in Pure and Applied Mathematics, 110, Marcel Dekker, Inc., New York, Zbl 0832.34071, MR 1017244
Reference: [20] Li, X., Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients.J. Math. Anal. Appl., 269, 2, 2002, 462-488, MR 1907126, 10.1016/S0022-247X(02)00029-X
Reference: [21] El-Morshedy, H.A., Attia, E.R.: New oscillation criterion for delay differential equations with non-monotone arguments.Appl. Math. Lett., 54, 2016, 54-59, MR 3434455, 10.1016/j.aml.2015.10.014
Reference: [22] My¹kis, A.D.: Linear homogeneous differential equations of first order with deviating arguments.Uspekhi Mat. Nauk, 5, 36, 1950, 160-162, (in Russian). MR 0036423
Reference: [23] Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z.: Oscillations of differential equations with deviating arguments.Panamer. Math. J., 2, 2, 1992, 59-78, MR 1160129
Reference: [24] Zhang, B.G.: Oscillation of solutions of the first-order advanced type differential equations.Science Exploration, 2, 1982, 79-82, MR 0713776
Reference: [25] Zhou, D.: On some problems on oscillation of functional differential equations of first order.J. Shandong University, 25, 1990, 434-442,
.

Files

Files Size Format View
ActaOstrav_27-2019-2_6.pdf 475.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo