Previous |  Up |  Next

Article

Keywords:
volume growth; parabolic manifolds; weighted parabolic manifolds
Summary:
We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds.
References:
[1] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 (3) (1975), 333–354. DOI 10.1002/cpa.3160280303 | MR 0385749 | Zbl 0312.53031
[2] Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. of Math. (2) 135 (1) (1992), 165–182. DOI 10.2307/2946567 | MR 1147961
[3] Greene, R.E., Wu, H.: Function theory on manifolds which possesses a pole. Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979. DOI 10.1007/BFb0063413 | MR 0521983
[4] Grigoryan, A.A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1983), 161–162, (Russian), English translation: Russian Math. Surveys 38 (1983), no. 1, 190–191. MR 0693728
[6] Grigoryan, A.A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (2) (1999), 135–249. DOI 10.1090/S0273-0979-99-00776-4 | MR 1659871
[7] Hua, B., Liu, S., Xia, C.: Liouville theorems for f-harmonic maps into Hadamard Spaces. Pacific J. Math. 290 (2017), 381–402. DOI 10.2140/pjm.2017.290.381 | MR 3681112
[8] Jost, J.: Riemannian geometry and geometric analysis. Springer, Berlin, 2017. MR 3726907
[9] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions. Seminar on Differential Geometry (Yau, S.T., ed.), Ann. Math. Stud. 102, Princeton, 1982.
[10] Kong, S., Li, P., Zhou, D.: Spectrum of the Laplacian on Quaternionic Kähler manifolds. J. Differential Geom. 78 92) (2008), 295–332. DOI 10.4310/jdg/1203000269 | MR 2394025
[11] Lam, K-H.: Spectrum of the Laplacian on manifolds with Spin(9) holonomy. Math. Res. Lett. 15 (6) (2018), 1167–1186. DOI 10.4310/MRL.2008.v15.n6.a8 | MR 2470392
[12] Li, P.: On the structure of complete Kähler manifolds with nonnegative curvature near infinity. Invent. Math. 99 (1990), 579–600. DOI 10.1007/BF01234432 | MR 1032881
[13] Li, P.: Curvature and function theory on Riemannian manifolds. Surveys in Differential Geometry, vol. 7, International Press, Cambridge, 2002, Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, pp. 375–432.
[14] Munteanu, O., Wang, J.: Kähler manifolds with real holomorphic vector fields. Math. Ann. 363 (2015), 893–911. DOI 10.1007/s00208-015-1192-1 | MR 3412346
[15] Rigolli, M., Setti, A.: Liouville type theorems for $\phi $ subharmonic functions. Rev. Mat. Iberoamerican 17 (2001), 471–521. DOI 10.4171/RMI/302 | MR 1900893
[16] Ruppenthal, J.: Parabolicity of the regular locus of complex varieties. Proc. Amer. Math. Soc. 144 (2016), 225–233. DOI 10.1090/proc12718 | MR 3415591
[17] Sampson, J.H.: Applications to harmonic maps to Kähler geometry. Complex differential geometry and nonlinear differential equation, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 1986. MR 0833809
[18] Siu, Y.T.: The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifold. Ann. of Math. (2) 112 (1) (1980), 73–111. DOI 10.2307/1971321 | MR 0584075
[19] Tasayco, D., Zhou, D.: Uniqueness of grim hyperplanes for mean curvature flows. Arch. Math. (Basel) 109 (2) (2017), 191–200. DOI 10.1007/s00013-017-1057-9 | MR 3673637
[20] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, pp. 821–837. MR 0730112
[21] Vieira, M.: Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci curvature. Arch. Math. (Basel) 101 (2013), 581–590. DOI 10.1007/s00013-013-0594-0 | MR 3133732
Partner of
EuDML logo