Previous |  Up |  Next

Article

Title: Variable exponent Fock spaces (English)
Author: Chacón, Gerardo R.
Author: Chacón, Gerardo A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 187-204
Summary lang: English
.
Category: math
.
Summary: We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones. (English)
Keyword: Fock space
Keyword: variable exponent Lebesgue space
Keyword: Bergman projection
MSC: 30H20
MSC: 46E30
idZBL: 07217128
idMR: MR4078353
DOI: 10.21136/CMJ.2019.0205-18
.
Date available: 2020-03-10T10:17:24Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148049
.
Reference: [1] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. Zbl 1288.30059, MR 3200739, 10.1016/j.na.2014.04.001
Reference: [2] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces.Mediterr. J. Math. 13 (2016), 3525-3536. Zbl 1354.30049, MR 3554324, 10.1007/s00009-016-0701-0
Reference: [3] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces.Complex Anal. Oper. Theory 11 (2017), 1623-1638. Zbl 1387.30081, MR 3702967, 10.1007/s11785-016-0573-0
Reference: [4] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [6] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. Zbl 1360.46029, MR 3516828, 10.1016/j.na.2016.05.002
Reference: [7] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights.J. Oper. Theory 71 (2014), 381-410. Zbl 1313.47059, MR 3214643, 10.7900/jot.2012apr10.1989
Reference: [8] Karapetyants, A., Samko, S.: Spaces $ BMO^{p(\cdot)}(\mathbb D)$ of a variable exponent $p(z)$.Georgian Math. J. 17 (2010), 529-542. Zbl 1201.30072, MR 2719633, 10.1515/GMJ.2010.028
Reference: [9] Karapetyants, A. N., Samko, S. G.: Mixed norm Bergman-Morrey-type spaces on the unit disc.Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. Zbl 1364.30063, MR 3588827, 10.1134/S000143461607004X
Reference: [10] Karapetyants, A. N., Samko, S. G.: Mixed norm variable exponent Bergman space on the unit disc.Complex Var. Elliptic Equ. 61 (2016), 1090-1106. Zbl 1351.30042, MR 3500518, 10.1080/17476933.2016.1140750
Reference: [11] Kokilashvili, V., Paatashvili, V.: On Hardy classes of analytic functions with a variable exponent.Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. Zbl 1126.47031, MR 2294576
Reference: [12] Kokilashvili, V., Paatashvili, V.: On the convergence of sequences of functions in Hardy classes with a variable exponent.Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. Zbl 1166.47033, MR 2464049
Reference: [13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [14] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy-Orlicz spaces.Mem. Am. Math. Soc. 207 (2010), 74 pages. Zbl 1200.47035, MR 2681410, 10.1090/S0065-9266-10-00580-6
Reference: [15] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman-Orlicz spaces.Trans. Am. Math. Soc. 365 (2013), 3943-3970. Zbl 1282.47033, MR 3055685, 10.1090/S0002-9947-2013-05922-3
Reference: [16] Motos, J., Planells, M. J., Talavera, C. F.: On variable exponent Lebesgue spaces of entire analytic functions.J. Math. Anal. Appl. 388 (2012), 775-787. Zbl 1244.46008, MR 2869787, 10.1016/j.jmaa.2011.09.069
Reference: [17] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-211 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211
Reference: [18] Tung, Y.-C. J.: Fock Spaces.Ph.D. Thesis, The University of Michigan (2005). MR 2706955
Reference: [19] Zhu, K.: Analysis on Fock Spaces.Graduate Texts in Mathematics 263, Springer, New York (2012). Zbl 1262.30003, MR 2934601, 10.1007/978-1-4419-8801-0
.

Files

Files Size Format View
CzechMathJ_70-2020-1_11.pdf 346.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo