Previous |  Up |  Next

Article

Title: Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey (English)
Author: Ding, Derui
Author: Han, Qing-Long
Author: Ge, Xiaohua
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 5-34
Summary lang: English
.
Category: math
.
Summary: Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research. (English)
Keyword: distributed filtering
Keyword: sensor networks
Keyword: non-Gaussian noises
Keyword: network-induced phenomena
Keyword: communication protocols
MSC: 93A15
MSC: 93C55
MSC: 93E11
idZBL: Zbl 07217209
idMR: MR4091782
DOI: 10.14736/kyb-2020-1-0005
.
Date available: 2020-05-20T15:26:45Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148095
.
Reference: [1] Aazam, M., Zeadally, S., Harras, K. A.: Fog computing architecture, evaluation, and future research directions..IEEE Comm. Magazine 56, (2018), 5, 2018, 46-52. MR 3843414, 10.1109/mcom.2018.1700707
Reference: [2] Ahmad, F., Rasool, A., Ozsoy, E., Rajasekar, S., Sabanovic, A., Elitaş, M.: Distribution system state estimation-A step towards smart grid..Renewable Sustainable Energy Rev. 81 (2018), 2659-2671. 10.1016/j.rser.2017.06.071
Reference: [3] Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power systems subject to denial-of-service attacks..IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. 10.1109/tsmc.2019.2905253
Reference: [4] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. 10.1109/tcyb.2018.2885567
Reference: [5] Chen, Y., Wang, Z., Yuan, Y., Date, P.: Distributed $H_\infty$ filtering for switched stochastic delayed systems over sensor networks with fading measurements..IEEE Trans. Cybernet. 50 (2018), 1, 2-14. 10.1109/tcyb.2018.2852290
Reference: [6] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: Distributed recursive filtering of cyber-physical systems with security defenses..IEEE Trans. Systems Man Cybernet.: Systems. 10.1109/tsmc.2019.2960541
Reference: [7] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. 10.1109/tii.2019.2905295
Reference: [8] Ding, D., Wang, Z., Dong, H., Shu, H.: Distributed $H_\infty$ state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case..Automatica 48 (2012), 8, 1575-1585. MR 2950405, 10.1016/j.automatica.2012.05.070
Reference: [9] Ding, D., Wang, Z., Han, Q.-L.: Neural-network-based output-feedback control with stochastic communication protocols..Automatica 106 (2019), 221-229. MR 3952583, 10.1016/j.automatica.2019.04.025
Reference: [10] Ding, D., Wang, Z., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks..IEEE Trans. Automat. Control 65 (2020), 4, 1792-1799. MR 4052856, 10.1109/tac.2019.2934389
Reference: [11] Ding, D., Wang, Z., Han, Q.-L.: A scalable algorithm for event-triggered state estimation with unknown parameters and switching topologies over sensor networks..IEEE Trans. Cybernet. 10.1109/tcyb.2019.2917543
Reference: [12] Ding, D., Wang, Z., Han, Q.-L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols..IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. 10.1109/tcyb.2018.2827037
Reference: [13] Ding, D., Wang, Z., Ho, D. W. C., Wei, G.: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks..Automatica 78 (2017), 231-240. MR 3614098, 10.1016/j.automatica.2016.12.026
Reference: [14] Ding, D., Wang, Z., Lam, J., Shen, B.: Finite-Horizon $H_\infty$ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements..IEEE Trans. Automat. Control 60 (2015), 9, 2488-2493. MR 3393143, 10.1109/tac.2014.2380671
Reference: [15] Ding, D., Wang, Z., Shen, B., Shu, H.: $H_\infty$ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays..IEEE Trans. Neural Networks Learning Systems 23 (2012), 5, 725-736. 10.1109/tnnls.2012.2187926
Reference: [16] Ding, L., Han, Q.-L., Zhang, X.-M.: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism..IEEE Trans. Industr. Inform. 15 (2019), 7, 3910-3922. 10.1109/tii.2018.2884494
Reference: [17] Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M.: An overview of recent advances in event-triggered consensus of multiagent systems..IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. MR 3554944, 10.1109/tcyb.2017.2771560
Reference: [18] Ding, L., Han, Q.-L., Wang, L., Sindi, E.: Distributed cooperative optimal control of DC microgrids with communication delays..IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935. 10.1109/tii.2018.2799239
Reference: [19] Dong, H., Wang, Z., Gao, H.: Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts..IEEE Trans. Signal Process. 60 (2012), 6, 3164-3173. MR 2924079, 10.1109/tsp.2012.2190599
Reference: [20] Girard, A.: Dynamic triggering mechanisms for event-triggered control..IEEE Trans. Cybernet. 60 (2015), 7, 1992-1997. MR 3365092, 10.1109/tac.2014.2366855
Reference: [21] Ge, X., Han, Q.-L.: Distributed event-triggered $H_\infty$ filtering over sensor networks with communication delays..Inform. Sci. 291 (2015), 128-142. MR 3264405, 10.1016/j.ins.2014.08.047
Reference: [22] Ge, X., Han, Q.-L.: Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism..IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127. 10.1109/tie.2017.2701778
Reference: [23] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks..IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 10.1109/tcyb.2017.2789296
Reference: [24] Ge, X., Han, Q.-L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernet. 49 (2019), 1, 171-183. 10.1109/tcyb.2017.2769722
Reference: [25] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.: Distributed event-triggered estimation over sensor networks: A survey..IEEE Trans. Cybernet. 50 (2020), 3, 1306-1320. 10.1109/tcyb.2019.2917179
Reference: [26] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, D., Yang, F.: Resilient and secure remote monitoring for a class of cyber-physical systems against attacks..Inform. Sci. 512 (2020), 1592-1605. MR 4038642, 10.1016/j.ins.2019.10.057
Reference: [27] Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M.: Distributed Krein space-based attack detection over sensor networks under deception attacks..Automatica 109 (2019), 108557. MR 3998774, 10.1016/j.automatica.2019.108557
Reference: [28] Gupta, P., Kumar, P. R.: The capacity of wireless networks..IEEE Trans. Inform. Theory 46 (2000), 2, 388-404. MR 1748976, 10.1109/18.825799
Reference: [29] Han, F., Dong, H., Wang, Z., Li, G.: Local design of distributed $H_\infty$-consensus filtering over sensor networks under multiplicative noises and deception attacks..Int. J. Robust Nonlinear Control 29 (2019), 8, 2296-2314. MR 3940120, 10.1002/rnc.4493
Reference: [30] Han, F., Wei, G., Ding, D., Song, Y.: Local condition based consensus filtering with stochastic nonlinearities and multiple missing measurements..IEEE Trans. Automat. Control 62 (2017), 9, 4784-4790. MR 3691904, 10.1109/tac.2017.2689722
Reference: [31] Heemels, W. P. M. H., Johansson, K. H., Tabuada, P.: An introduction to eventtriggered and self-triggered control..In: Proc. 51st IEEE Conference on Decision and Control, Maui 2012, pp. 3270-3285. MR 2952326, 10.1109/cdc.2012.6425820
Reference: [32] Healy, M., Newe, T., Lewis, E.: Wireless sensor node hardware: A review..In: 2008 IEEE Sensor, Lecce 2008, pp. 621-624. 10.1109/icsens.2008.4716517
Reference: [33] Hill, J. L., Culler, D. E.: Mica: a wireless platform for deeply embedded networks..IEEE Micro 22, (2002), 6, 12-24. 10.1109/mm.2002.1134340
Reference: [34] Hu, J., Wang, Z., Liang, J., Dong, H.: Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: A delay-fractioning approach..J. Franklin Inst. 352 (2015), 3750-3763. MR 3385893, 10.1016/j.jfranklin.2014.12.006
Reference: [35] Hu, S., Yue, D., Chen, X., Cheng, Z., Xie, X.: Resilient $H_\infty$ filtering for event-triggered networked systems under nonperiodic DoS jamming attacks..IEEE Trans. Systems Man Cybernet.: Systems. 10.1109/tsmc.2019.2896249
Reference: [36] Jenabzadeh, A., Safarinejadian, B.: A Lyapunov-based distributed consensus filter for a class of nonlinear stochastic systems..Automatica 86 (2017), 53-62. MR 3711448, 10.1016/j.automatica.2017.08.005
Reference: [37] Karray, F., Jmal, M. W., Garcia-Ortiz, A., Abid, M., Obeid, A. M.: A comprehensive survey on wireless sensor node hardware platforms..Comput. Networks 144, (2018), 89-110. 10.1016/j.comnet.2018.05.010
Reference: [38] Li, J.-Y., Zhang, B., Lu, R., Xu, Y.: Robust distributed $H_\infty$ state estimation for stochastic periodic systems over constraint sensor networks..IEEE Trans. Systems Man Cybernet.: Systems. 10.1109/tsmc.2018.2837047
Reference: [39] Li, Q., Shen, B., Wang, Z., Shen, W.: Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic event-triggered approach..Automatica 113 (2019), 108681. MR 4056010, 10.1016/j.automatica.2019.108681
Reference: [40] Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J.: Synchronization control for a Class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach..IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR 3891660, 10.1109/tcyb.2018.2818941
Reference: [41] Liang, J., Wang, Z., Liu, X.: Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements..IEEE Trans. Neural Networks 22 (2011), 3, 486-496. 10.1109/tnn.2011.2105501
Reference: [42] Liu, D., Yang, G.-H.: Dynamic event-triggered control for linear time-invariant systems with $l_2$-gain performance..Int. J. Robust Nonlinear Control 29 (2019), 507-518. MR 3890676, 10.1002/rnc.4403
Reference: [43] Liu, J., Gu, Y., Cao, J., Fei, S.: Distributed event-triggered $H_\infty$ filtering over sensor networks with sensor saturations and cyber-attacks..ISA Trans. 81 (2018), 63-75. 10.1016/j.isatra.2018.07.018
Reference: [44] Liu, K., Guo, H., Zhang, Q., Xia, Y.: Distributed secure filtering for discrete-time systems under Round-Robin protocol and deception attacks..IEEE Trans. Cybernet. 10.1109/tcyb.2019.2897366
Reference: [45] Liu, Q., Wang, Z., He, X., Zhou, D. H.: Event-based distributed filtering with stochastic measurement fading..IEEE Trans. Industr. Inform. 11 (2015), 6, 1643-1652. MR 3671115, 10.1109/tii.2015.2444355
Reference: [46] Liu, S., Liu, P.: Distributed model-based control and scheduling for load frequency regulation of smart grids over limited bandwidth networks..IEEE Trans. Industr. Inform. 14 (2018), 5, 1814-1823. 10.1109/tii.2017.2766666
Reference: [47] Liu, S., Wang, Z., Wei, G., Li, M.: Distributed set-membership filtering for multirate systems under the Round-Robin scheduling over sensor networks..IEEE Trans. Cybernetics. 10.1109/tcyb.2018.2885653
Reference: [48] Liu, Y., Zhao, Y., Wu, F.: Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances..IET Control Theory Appl. 10 (2016), 4, 431-442. MR 3495243, 10.1049/iet-cta.2015.0654
Reference: [49] Ma, L., Wang, Z., Han, Q.-L., Lam, H.-K.: Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks..IEEE Sensors J. 17 (2017), 7, 2279-2288. 10.1109/jsen.2017.2654325
Reference: [50] Ma, L., Wang, Z., Lam, H.-K., Kyriakoulis, N.: Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks..IEEE Trans. Cybernet. 47 (2017), 11, 3772-3783. 10.1109/tcyb.2016.2582081
Reference: [51] Mahmud, R., Toosi, A. N., Ramamohanarao, K., Buyya, R.: Context-aware placement of industry 4.0 applications in fog computing environments..IEEE Trans. Industr. Inform. 10.1109/tii.2019.2952412
Reference: [52] Marin-Perianu, M., Meratnia, N., Havinga, P., et.al.: Decentralized enterprise systems: a multiplatform wireless sensor network approach..IEEE Wireless Commun. 14, (2007), 6, 57-66. 10.1109/mwc.2007.4407228
Reference: [53] Meral, M., Çelík, D.: A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions..Ann. Rev. Control 47 (2019), 112-132. MR 3973204, 10.1016/j.arcontrol.2018.11.003
Reference: [54] Mihai, V., Dragana, C., Stamatescu, G., Popescu, D., Ichim, L.: Wireless sensor network architecture based on fog computing..In: 5th International Conference on Control, Decision and Information Technologies. Thessaloniki, 2018, pp. 743-747. 10.1109/codit.2018.8394851
Reference: [55] Millán, P., Orihuela, L., Vivas, C., Rubio, F.: Distributed consensus-based estimation considering network induced delays and dropouts..Automatica 48 (2012), 10, 2726-2729. MR 2961178, 10.1016/j.automatica.2012.06.093
Reference: [56] Olfati-Saber, R.: Distributed Kalman filtering for sensor networks..In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. 10.1109/cdc.2007.4434303
Reference: [57] Olfati-Saber, R.: Kalman-consensus filter: Optimality, stability, and performance..In: Proc. 48h IEEE Conference on Decision and Control, Shanghai 2009, pp. 7036-7042. 10.1109/cdc.2009.5399678
Reference: [58] Olfati-Saber, R., Jalalkamali, P.: Coupled distributed estimation and control for mobile sensor networks..IEEE Trans. Automat. Control 57 (2012), 10, 2609-2614. MR 2991662, 10.1109/tac.2012.2190184
Reference: [59] Rafi, A., Rehman, A., Ali, G., Akram, J.: Efficient energy utilization in fog computing based wireless sensor networks..In: 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur 2019, pp. 1-5. 10.1109/icomet.2019.8673423
Reference: [60] Rahman, T., Yao, X., Tao, G., Ning, H., Zhou, Z.: Efficient edge nodes reconfiguration and selection for the internet of things..IEEE Sensors J. 19, (2019), 12, 4672-4679. 10.1109/jsen.2019.2895119
Reference: [61] Satyanarayanan, M., Schuster, R., Ebling, M., Fettweis, G., Flinck, H., Joshi, K., Sabnani, K.: An open ecosystem for mobile-cloud convergence..IEEE Commun. Magazine 53, (2015), 3, 63-70. 10.1109/mcom.2015.7060484
Reference: [62] Sarkar, S., Wankar, R., Srirama, S., Suryadevara, N. K.: Serverless management of sensing systems for fog computing framework..IEEE Sensors J. 20 (2020), 3, 1564-1572. 10.1109/jsen.2019.2939182
Reference: [63] Shen, B., Wang, Z., Hung, Y. S.: Distributed $H_\infty$-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case..Automatica 66 (2010), 10, 1682-1688. Zbl 1204.93122, MR 2877323, 10.1016/j.automatica.2010.06.025
Reference: [64] Shen, B., Wang, Z., Liu, X.: A stochastic sampled-data approach to distributed $H_\infty$ filtering in sensor networks..IEEE Trans. Circuits Systems I: Regular Papers 58 (2011), 9, 2237-2246. MR 2868162, 10.1109/tcsi.2011.2112594
Reference: [65] Shen, B., Wang, Z., Qiao, H.: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements..IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. MR 3721783, 10.1109/tnnls.2016.2516030
Reference: [66] Song, H., Yu, L., Zhang, W.-A.: Multi-sensor-based $H_\infty$ estimation in heterogeneous sensor networks with stochastic competitive transmission and random sensor failures..IET Control Theory Appl. 8 (2014), 3, 202-210. MR 3185345, 10.1049/iet-cta.2013.0432
Reference: [67] Souravlias, D., Parsopoulos, K.: Particle swarm optimization with neighborhood-based budget allocation..Int. J. Machine Learning Cybernet. 7 (2016), 3, 451-477. 10.1007/s13042-014-0308-3
Reference: [68] Su, H., Li, Z., Ye, Y.: Event-triggered Kalman-consensus filter for two-target tracking sensor networks..ISA Trans. 71 (2017), 1, 103-111. MR 3468618, 10.1016/j.isatra.2017.06.019
Reference: [69] Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: Distributed filtering for T-S fuzzy systems..IEEE Trans. Industr. Inform. 9 (2013), 3, 1739-1750. 10.1109/tii.2012.2231085
Reference: [70] Sun, Z., Wei, L., Xu, C., Wang, T., Nie, Y., Xing, X., Lu, J.: An energy-efficient cross-layer-sensing clustering method based on intelligent fog computing in WSNs..IEEE Access 14, (2019), 7, 144165-144177. 10.1109/access.2019.2944858
Reference: [71] Tan, Y., Xiong, M., Niu, B., Liu, J., Fei, S.: Distributed hybrid-triggered $H_\infty$ filter design for sensor networked systems with output saturations..Neurocomputing 315 (2018), 261-271. 10.1016/j.neucom.2018.07.022
Reference: [72] Ugrinovskii, V.: Distributed robust filtering with $H_\infty$ consensus of estimates..Automatica 47 (2011), 1, 1-13. Zbl 1209.93152, MR 2878241, 10.1016/j.automatica.2010.10.002
Reference: [73] Ugrinovskii, V., Fridman, E.: A Round-Robin type protocol for distributed estimation with $H_\infty$ consensus..Systems Control Lett. 69 (2014), 103-110. Zbl 1288.93009, MR 3212828, 10.1016/j.sysconle.2014.05.001
Reference: [74] Ugrinovskii, V.: Distributed $H_\infty$ estimation resilient to biasing attacks..IEEE Trans. Control Network Systems 7 (2020), 1, 458-470. 10.1109/tcns.2019.2924192
Reference: [75] Wan, X., Wang, Z., Han, Q.-L., Wu, M.: Finite-time $H_\infty$ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols..IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. MR 3854691, 10.1109/tcns.2019.2924192
Reference: [76] Wan, X., Wang, Z., Wu, M., Liu, X.: $H_\infty$ state estimation for discrete-time nonlinear singularly perturbed complex networks under the Round-Robin protocol..IEEE Trans. Neural Networks Learning Systems 30 (2019), 2, 415-426. MR 3914858, 10.1109/tnnls.2018.2839020
Reference: [77] Wang, D., Wang, Z., Li, G., Wang, W.: Distributed filtering for switched nonlinear positive systems with missing measurements over sensor networks..IEEE Sensors J. 16 (2016), 12, 4940-4948. 10.1109/jsen.2016.2555761
Reference: [78] Wang, D., Wang, Z., Shen, B., Li, Q.: $H_\infty$ finite-horizon filtering for complex networks with state saturations: The weighted try-once-discard protocol..Int. J. Robust Nonlinear Control 29 (2019), 2096-2111. MR 3940107, 10.1002/rnc.4479
Reference: [79] Wang, L., Wang, Z., Han, Q.-L., Wei, G.: Event-based variance-constrained $H_\infty$ filtering for stochastic parameter systems over sensor networks with successive missing measurements..IEEE Trans. Cybernet. 48 (2018), 3, 1007-1017. MR 1988100, 10.1109/tcyb.2017.2671032
Reference: [80] Wang, T., Qiu, J., Fu, S., Ji, W.: Distributed fuzzy $H_\infty$ filtering for nonlinear multirate networked double-layer industrial processes..IEEE Trans. Industr. Electron. 64 (2017), 6, 5203-5211. 10.1109/tie.2016.2622234
Reference: [81] Wang, X.-L., Yang, G.-H.: Distributed event-triggered $H_\infty$ filtering for discrete-time T-S fuzzy systems over sensor networks..IEEE Trans. Systems Man Cybernet.: Systems. 10.1109/tsmc.2018.2882540
Reference: [82] Wen, C., Wang, Z., Liu, Q., Alsaadi, F. E.: Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 930-941. 10.1109/tsmc.2016.2629464
Reference: [83] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks..IEEE Trans. Cybernet. 50 (2020), 3, 1220-1229. 10.1109/tcyb.2019.2900478
Reference: [84] Xu, Y., Lu, R., Shi, P., Li, H., Xie, S.: Finite-time distributed state estimation over sensor networks with Round-Robin protocol and fading channels..IEEE Trans. Cybernet. 48 (2018), 1, 336-345. 10.1109/tcyb.2016.2635122
Reference: [85] Yan, H., Yang, Q., Zhang, H., Yang, F., Zhan, X.: Distributed $H_\infty$ state estimation for a class of filtering networks with time-varying switching topologies and packet losses..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2047-2057. 10.1109/tsmc.2017.2708507
Reference: [86] Yan, H., Zhang, H., Yang, F., Huang, C., Chen, S.: Distributed $H_\infty$ filtering for switched repeated scalar nonlinear systems with randomly occurred sensor nonlinearities and asynchronous switching..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2263-2270. 10.1109/tsmc.2017.2754495
Reference: [87] Yang, F., Han, Q.-L., Liu, Y.: Distributed $H_\infty$ state estimation over a filtering network with time-varying and switching topology and partial information exchange..IEEE Trans. Cybernet. 49 (2019), 3, 870-882. 10.1109/tcyb.2017.2789212
Reference: [88] Yang, F., Xia, N., Han, Q.-L.: Event-based networked islanding detection for distributed solar PV generation systems..IEEE Trans. Industr. Inform. 13 (2017), 1, 322-329. 10.1109/tii.2016.2607999
Reference: [89] Yang, W., Wang, X. F., Shi, H. B.: Optimal consensus-based distributed estimation with intermittent communication..Int. J. Systems Sci. 42 (2011), 9, 1521-1529. MR 2819529, 10.1080/00207721.2011.565135
Reference: [90] Yin, X., Li, Z., Zhang, L., Han, M.: Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 864-874. 10.1109/tsmc.2016.2632155
Reference: [91] Yu, H., Zhuang, Y., Wang, W.: Distributed $H_\infty$ filtering in sensor networks with randomly occurred missing measurements and communication link failures..Inform. Sci. 222 (2013), 424-438. MR 2998522, 10.1016/j.ins.2012.07.059
Reference: [92] Yu, W., Deng, Z., Zhou, H., Zeng, X.: Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems..Kybernetika 53 (2017), 5, 747-764. MR 3750101, 10.14736/kyb-2017-5-0747
Reference: [93] Yu, Y., Shen, Y.: Robust sampled-data observer design for lipschitz nonlinear systems..Kybernetika 54 (2018), 4, 699-717. MR 3863251, 10.14736/kyb-2018-4-0699
Reference: [94] Zhang, D., Shi, P., Zhang, W.-A., Yu, L.: Energy-efficient distributed filtering in sensor networks: A unified switched system approach..IEEE Trans. Cybernet. 46 (2017), 7, 1618-1629. MR 3537173, 10.1109/tcyb.2016.2553043
Reference: [95] Zhang, D., Yu, L., Zhang, W.-A.: Energy efficient distributed filtering for a class of nonlinear systems in sensor networks..IEEE Sensors J. 15 (2015), 5, 3026-3036. 10.1109/jsen.2014.2386348
Reference: [96] Zhang, H., Hong, Q., Yan, H., Yang, F., Guo, G.: Event-based distributed $H_\infty$ filtering networks of 2-DOF quarter-car suspension systems..IEEE Trans. Industr. Inform. 13 (2017), 1, 312-321. 10.1109/tii.2016.2569566
Reference: [97] Zhang, H., Wang, Z., Yan, H., Yang, F., Zhou, X.: Adaptive event-triggered transmission scheme and $H_\infty$ filtering co-design over a filtering network with switching topology..IEEE Trans. Cybernet. 49 (2019), 12, 4296-4307. MR 3957647, 10.1109/tcyb.2018.2862828
Reference: [98] Zhang, L., Ning, Z., Wang, Z.: Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels..IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 6, 559-572. 10.1109/tsmc.2015.2435700
Reference: [99] Zhang, P., Wang, J.: Event-triggered observer-based tracking control for leader-follower multi-agent systems..Kybernetika 52 (2016), 4, 589-606. MR 3565771, 10.14736/kyb-2016-4-0589
Reference: [100] Zhang, W.-A., Dong, H., Guo, G., Yu, L.: Distributed sampled-data $H_\infty$ filtering for sensor networks with nonuniform sampling periods..IEEE Trans. Industr. Inform. 10 (2014), 2, 871-881. 10.1109/tii.2014.2299897
Reference: [101] Zhang, X.-M., Han, Q.-L.: State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality..IEEE Trans. Neural Networks Learning Syst. 313 (2018), 29, 1376-1381. MR 3867869, 10.1109/tnnls.2017.2661862
Reference: [102] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D.: An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays..Neurocomputing 313 (2018), 392-401. 10.1016/j.neucom.2018.06.038
Reference: [103] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques..IEEE/CAA J. Automat. Sinica 7 (2020), 1, 1-17. MR 3841465, 10.1109/jas.2019.1911651
Reference: [104] Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F., He, Y.: Overview of recent advances in stability of linear systems with time-varying delays..IET Control Theory Appl. 13 (2019), 1, 1-16. MR 3888201, 10.1049/iet-cta.2018.5188
Reference: [105] Zhang, X.-M., Han, Q.-L., Ge, X.: Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay..IEEE/CAA J. Automat. Sinica. 10.1109/jas.2020.1003111
Reference: [106] Zhu, S., Chen, C., Li, W., Yang, B., Guan, X.: Distributed optimal consensus filter for target tracking in heterogeneous sensor networks..IEEE Trans. Cybernet. 43 (2013), 6, 1963-1976. 10.1109/tsmcb.2012.2236647
Reference: [107] Zhu, Y., Zhang, L., Zheng, W.: Distributed $H_\infty$ filtering for a class of discrete-time Markov jump Lur'e systems with redundant channels..IEEE Trans. Industr. Electron. 63 (2016), 3, 1876-1885. 10.1109/tie.2015.2499169
Reference: [108] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects..IEEE Trans. Automat. Control 62 (2017), 12, 6582-6588. MR 3743543, 10.1109/tac.2017.2713353
Reference: [109] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Recursive filtering for time-varying systems with random access protocol..IEEE Trans. Automat. Control 64 (2019), 2, 720-727. MR 3912120, 10.1109/tac.2017.2713353
Reference: [110] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Moving horizon estimation for networked time-delay systems under Round-Robin protocol..IEEE Trans. Automat. Control 64 (2019), 12, 5191-5198. MR 4044317, 10.1109/tac.2019.2910167
Reference: [111] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Full information estimation for linear time-varying systems with Round-Robin protocol: A recursive filter approach..IEEE Trans. Systems Man Cybernet.: Systems. 10.1109/tac.2018.2833154
.

Files

Files Size Format View
Kybernetika_56-2020-1_2.pdf 801.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo