Previous |  Up |  Next

Article

Title: Mobile robot localization under stochastic communication protocol (English)
Author: Lu, Yanyang
Author: Shen, Bo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 152-169
Summary lang: English
.
Category: math
.
Summary: In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the $H_{\infty}$ performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform. (English)
Keyword: localization
Keyword: mobile robot
Keyword: Riccati equations
Keyword: stochastic communication protocol
MSC: 93C95
MSC: 93E11
idZBL: Zbl 07217215
idMR: MR4091788
DOI: 10.14736/kyb-2020-1-0152
.
Date available: 2020-05-20T15:38:39Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148101
.
Reference: [1] Chen, J., Qiao, H.: Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system..IEEE Trans. Systems Man Cybernet.: Systems (2020), 1-14.
Reference: [2] Chen, S. Y.: Kalman filter for robot vision: A survey..IEEE Trans. Industr. Electron. 59 (2012), 11, 4409-4420. 10.1109/tie.2011.2162714
Reference: [3] Chen, W., Ding, D., Ge, X., Han, Q., Wei, G.: $H_{\infty}$ containment control of multiagent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. 10.1109/tcyb.2018.2885567
Reference: [4] Ding, D., Han, Q., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. 10.1109/tii.2019.2905295
Reference: [5] Ding, D., Wang, Z., Han, Q.: Neural-network-based output-feedback control with stochastic communication protocols..Automatica 106 (2019), 221-229. MR 3952583, 10.1016/j.automatica.2019.04.025
Reference: [6] Ding, D., Wang, Z., Han, Q., Wei, G.: Neural-network-based output-feedback control under round-robin scheduling protocols..IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. 10.1109/tcyb.2018.2827037
Reference: [7] Ding, D., Wang, Z., Han, Q., Wei, G.: Security control for discrete-time stochastic nonlinear systems subject to deception attacks..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 5, 779-789. 10.1109/tsmc.2016.2616544
Reference: [8] Ding, D., Wang, Z., Ho, D. W. C., Wei, G.: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks..Automatica 78 (2017), 231-240. MR 3614098, 10.1016/j.automatica.2016.12.026
Reference: [9] Dong, H., Hou, N., Wang, Z., Liu, H.: Finite-horizon fault estimation under imperfect measurements and stochastic communication protocol: Dealing with finite-time boundedness..Int. J.Robust Nonlinear Control 29 (2019), 1, 117-134. MR 3886112, 10.1002/rnc.4382
Reference: [10] Ge, X., Han, Q.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies..IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. 10.1109/tcyb.2016.2570860
Reference: [11] Ge, X., Han, Q., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernet. 49(2019), 1, 171-183. 10.1109/tcyb.2016.2570860
Reference: [12] Ge, X., Han, Q., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks..IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 10.1109/tcyb.2017.2789296
Reference: [13] Guan, R. P., Ristic, B., Wang, L., Moran, B., Evans, R.: Feature-based robot navigation using a Doppler-azimuth radar..Int. J. Control 90 (2017), 4, 888-900. MR 3613055, 10.1080/00207179.2016.1244727
Reference: [14] Hu, L., Wang, Z., Han, Q., Liu, X.: State estimation under false data injection attacks: Security analysis and system protection..Automatica 87 (2018), 176-183. MR 3733913, 10.1016/j.automatica.2017.09.028
Reference: [15] Huang, C., Shen, B., Chen, H., Shu, H.: A dynamically event-triggered approach to recursive filtering with censored measurements and parameter uncertainties..J. Franklin Inst. 356 (2019), 15, 8870-8889. MR 4010163, 10.1016/j.jfranklin.2019.08.029
Reference: [16] Khan, A., Rinner, B., Cavallaro, A.: Cooperative robots to observe moving targets: Review..IEEE Trans. Cybernet. 48 (2018), 1, 187-198. 10.1109/tcyb.2016.2628161
Reference: [17] Kim, Y., An, J., Lee, J.: Robust navigational system for a transporter using GPS/INS fusion..IEEE Trans. Industr. Electron. 65 (2018), 4, 3346-3354. 10.1109/tie.2017.2752137
Reference: [18] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization..Int. J. Robotics Res. 34 (2015), 3, 314-334. 10.1177/0278364914554813
Reference: [19] Li, B., Wang, Z., Han, Q., Liu, H.: Input-to-state stabilization in probability for nonlinear stochastic systems under quantization effects and communication protocols..IEEE Trans. Cybernet. 49 (2019), 9, 3242-3254. MR 3998230, 10.1109/tcyb.2018.2839360
Reference: [20] Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J.: Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach..IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR 3891660, 10.1109/tcyb.2018.2818941
Reference: [21] Li, R., Qiao, H.: A survey of methods and strategies for high-precision robotic grasping and assembly tasks-some new trends..IEEE/ASME Trans. Mechatronics 24 (2019), 6, 2718-2732. 10.1109/tmech.2019.2945135
Reference: [22] Li, X., Chen, W., Chan, C., Li, B., Song, X.: Multi-sensor fusion methodology for enhanced land vehicle positioning..Inform. Fusion 46 (2019), 51-62. 10.1016/j.inffus.2018.04.006
Reference: [23] Liu, H., Sun, F., Fang, B., Zhang, X.: Robotic room-level localization using multiple sets of sonar measurements..IEEE Trans. Instrument. Measurement 66 (2017), 1, 2-13. 10.1109/tim.2016.2618978
Reference: [24] Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., Milford, M. J.: Visual place recognition: A survey..IEEE Trans. Robotics 32 (2016), 1, 1-19. 10.1109/tro.2015.2496823
Reference: [25] Luo, R. C., Hsiao, T. J.: Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach..IEEE Trans. Industr. Electron. 66 (2019), 3, 1940-1951. 10.1109/tie.2018.2833021
Reference: [26] Luo, Y., Wang, Z., Wei, G., Alsaadi, F. E., Hayat, T.: State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol..Neural Networks 77 (2016), 70-79. 10.1016/j.neunet.2016.01.001
Reference: [27] Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E.: Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology..Int.J. Robust Nonlinear Control 29 (2019), 10, 2941-2959. MR 3973575, 10.1002/rnc.4535
Reference: [28] Ma, L., Wang, Z., Han, Q., Liu, Y.: Dissipative control for nonlinear Markovian jump systems with actuator failures and mixed time-delays..Automatica 98 (2018), 358-362. MR 3866952, 10.1016/j.automatica.2018.09.028
Reference: [29] Shen, B., Wang, Z., Qiao, H.: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements..IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. MR 3721783, 10.1109/tnnls.2016.2516030
Reference: [30] Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., Peng, Y.: Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor..Automatica 100 (2019), 144-152. MR 3881144, 10.1016/j.automatica.2018.11.010
Reference: [31] Wan, X., Wang, Z., Han, Q., Wu, M.: A recursive approach to quantized $H_{\infty}$ state estimation for genetic regulatory networks under stochastic communication protocols..IEEE Trans. Neural Networks Learning Systems 30 (2019), 9, 2840-2852. MR 4001276, 10.1109/tnnls.2018.2885723
Reference: [32] Wan, X., Wang, Z., Han, Q., Wu, M.: Finite-time $H_{\infty}$ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols..IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. MR 3854691, 10.1109/tcsi.2018.2815269
Reference: [33] Wang, Z., Dong, H., Shen, B., Gao, H.: Finite-horizon $H_{\infty}$ filtering with missing measurements and quantization effects..IEEE Trans. Automat. Control 58 (2013), 7, 1707-1718. MR 3072855, 10.1109/tac.2013.2241492
Reference: [34] Xu, W., Ho, D. W. C., Li, L., Cao, J.: Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies..IEEE Trans. Cybernetics 47 (2017), 1, 212-223. 10.1109/tcyb.2015.2510746
Reference: [35] Yang, F., Wang, Z., Lauria, S., Liu, X.: Mobile robot localization using robust extended $H_{\infty}$ filtering..Proc. Inst. Mechanical Engineers, Part I: J. Systems Control Engrg. 223 (2009), 8, 1067-1080. 10.1243/09596518jsce791
Reference: [36] Zhang, X., Han, Q.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs..IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. 10.1109/tcyb.2015.2487420
Reference: [37] Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: A survey of trends and techniques..IEEE/CAA J. Automat. Sinica (2019), 1-17. MR 3748030, 10.1109/tcyb.2015.2487420
Reference: [38] Zou, L., Wang, Z., Gao, H.: Observer-based $H_{\infty}$ control of networked systems with stochastic communication protocol: The finite-horizon case..Automatica 63 (2016), 366-373. MR 3430004, 10.1016/j.automatica.2015.10.045
Reference: [39] Zou, L., Wang, Z., Gao, H.: Set-membership filtering for time-varying systems with mixed time-delays under round-robin and weighted try-once-discard protocols..Automatica 74 (2016), 341-348. MR 3569400, 10.1016/j.automatica.2016.07.025
Reference: [40] Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.: An overview of recent advances in fixed-time cooperative control of multiagent systems..IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR 3932129, 10.1109/tii.2018.2817248
.

Files

Files Size Format View
Kybernetika_56-2020-1_8.pdf 586.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo