Previous |  Up |  Next

Article

Title: On polynomial robustness of flux reconstructions (English)
Author: Vlasák, Miloslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 2
Year: 2020
Pages: 153-172
Summary lang: English
.
Category: math
.
Summary: We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^{1/2}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments. (English)
Keyword: a posteriori error estimate
Keyword: $p$-robustness
Keyword: elliptic problem
MSC: 65N15
MSC: 65N30
idZBL: 07217103
idMR: MR4083462
DOI: 10.21136/AM.2020.0152-19
.
Date available: 2020-05-20T15:45:00Z
Last updated: 2022-05-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148107
.
Reference: [1] Ainsworth, M., Oden, J. T.: A procedure for a posteriori error estimation for $h$-$p$ finite element methods.Comput. Methods Appl. Mech. Eng. 101 (1992), 73-96. Zbl 0778.73060, MR 1195579, 10.1016/0045-7825(92)90016-D
Reference: [2] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Pure and Applied Mathematics, Wiley-Interscience, New York (2000). Zbl 1008.65076, MR 1885308, 10.1002/9781118032824
Reference: [3] Ainsworth, M., Senior, B.: An adaptive refinement strategy for $hp$-finite element computations.Appl. Numer. Math. 26 (1998), 165-178. Zbl 0895.65052, MR 1602856, 10.1016/S0168-9274(97)00083-4
Reference: [4] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability.Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). Zbl 0995.65501, MR 1857191
Reference: [5] Babuška, I., Suri, M.: The $h$-$p$ version of the finite element method with quasi-uniform meshes.RAIRO, Modélisation Math. Anal. Numér. 21 (1987), 199-238. Zbl 0623.65113, MR 0896241, 10.1051/m2an/1987210201991
Reference: [6] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications.Springer Series in Computational Mathematics 44, Springer, Berlin (2013). Zbl 1277.65092, MR 3097958, 10.1007/978-3-642-36519-5
Reference: [7] Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are $p$-robust.Comput. Methods Appl. Mech. Eng. 198 (2009), 1189-1197. Zbl 1157.65483, MR 2500243, 10.1016/j.cma.2008.12.010
Reference: [8] Cochez-Dhondt, S., Nicaise, S., Repin, S.: A posteriori error estimates for finite volume approximations.Math. Model. Nat. Phenom. 4 (2009), 106-122. Zbl 1163.65074, MR 2483555, 10.1051/mmnp/20094105
Reference: [9] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations.Cambridge University Press, Cambridge (1996). Zbl 0946.65049, MR 1414897
Reference: [10] Ern, A., Stephansen, A. F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems.J. Comput. Appl. Math. 234 (2010), 114-130. Zbl 1190.65165, MR 2601287, 10.1016/j.cam.2009.12.009
Reference: [11] Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations.SIAM J. Numer. Anal. 53 (2015), 1058-1081. Zbl 1312.76026, MR 3335498, 10.1137/130950100
Reference: [12] Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers.SIAM J. Sci. Comput. 32 (2010), 1567-1590. Zbl 1215.65168, MR 2652091, 10.1137/08073706X
Reference: [13] Mali, O., Neittaanmäki, P., Repin, S. I.: Accuracy Verification Methods. Theory and Algorithms.Computational Methods in Applied Sciences 32, Springer, Dordrecht (2014). Zbl 1364.65106, MR 3136124, 10.1007/978-94-007-7581-7
Reference: [14] Melenk, J. M., Wohlmuth, B.: On residual-based a posteriori error estimation in $hp$-FEM.Adv. Comput. Math. 150 (2001), 311-331. Zbl 0991.65111, MR 1887738, 10.1023/A:1014268310921
Reference: [15] Prager, W., Synge, J. L.: Approximations in elasticity based on the concept of function space.Q. Appl. Math. 5 (1947), 241-269. Zbl 0029.23505, MR 0025902, 10.1090/qam/25902
Reference: [16] Repin, S. I.: A posteriori error estimation for variational problems with uniformly convex functionals.Math. Comput. 69 (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4
Reference: [17] Repin, S. I.: A Posteriori Estimates for Partial Differential Equations.Radon Series on Computational and Applied Mathematics 4, de Gruyter, Berlin (2008). Zbl 1162.65001, MR 2458008, 10.1515/9783110203042
Reference: [18] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems.Springer Series in Computational Mathematics 24, Springer, Berlin (2008). Zbl 1155.65087, MR 2454024, 10.1007/978-3-540-34467-4
Reference: [19] Szegő, G.: Orthogonal Polynomials.Colloquium Publication 23, American Mathematical Society, New York (1939). Zbl 0023.21505, MR 0000077, 10.1090/coll/023
Reference: [20] Tomar, S. K., Repin, S. I.: Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems.J. Comput. Appl. Math. 226 (2009), 358-369. Zbl 1163.65077, MR 2502931, 10.1016/j.cam.2008.08.015
Reference: [21] Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). Zbl 1279.65127, MR 3059294, 10.1093/acprof:oso/9780199679423.001.0001
.

Files

Files Size Format View
AplMat_65-2020-2_3.pdf 337.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo