Previous |  Up |  Next

Article

Title: Behaviour of higher-order approximations of the tests in the single parameter Cox proportional hazards model (English)
Author: Andrášiková, Aneta
Author: Fišerová, Eva
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 3
Year: 2020
Pages: 229-244
Summary lang: English
.
Category: math
.
Summary: Survival analysis is applied in a wide range of sectors (medicine, economy, etc.), and its main idea is based on evaluating the time until the occurrence of an event of interest. The effect of some particular covariates on survival time is usually described by the Cox proportional hazards model and the statistical significance of the impact of covariates is verified by the likelihood ratio test, the Wald test, or the score test. In addition to standard tests, appropriate higher-order approximations based on Barndorff-Nielsen and Lugannani-Rice formulas are used for more accurate approximations. In this paper, comparison of these tests' size and power for small sample sizes is performed on simulated datasets with various proportions of right-censored data, distributions of baseline hazard functions and different types of covariate---continuous or discrete. (English)
Keyword: survival analysis
Keyword: likelihood ratio test
Keyword: wald test
Keyword: score test
Keyword: statistical power
Keyword: adjusted power
Keyword: higher-order approximation
Keyword: confidence band
MSC: 62N01
MSC: 62N03
idZBL: 07217107
idMR: MR4114249
DOI: 10.21136/AM.2020.0344-19
.
Date available: 2020-06-10T13:08:42Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148140
.
Reference: [1] Adujemo, A. O., Ahmadu, A. O.: A study of the slope of Cox proportional hazard and Weibull models: Simulated and real life data approach.Science World Journal 11 (2016), 31-35.
Reference: [2] Agresti, A., Coull, B. A.: Approximate is better than ``exact'' for interval estimation of binomial proportions.Am. Stat. 52 (1998), 119-126. MR 1628435, 10.2307/2685469
Reference: [3] Barndorff-Nielsen, O., Cox, D. R.: Edgeworth and saddle-point approximations with statistical applications.J. R. Stat. Soc., Ser. B 41 (1979), 279-312. Zbl 0424.62010, MR 0557595, 10.1111/j.2517-6161.1979.tb01085.x
Reference: [4] Bělašková, S., Fišerová, E.: Improvement of the accuracy in testing the effect in the Cox proportional hazards model using higher order approximations.Filomat 31 (2017), 5591-5601. MR 3744163, 10.2298/FIL1718591B
Reference: [5] Bender, R., Augustin, T., Blettner, M.: Generating survival times to simulate Cox proportional hazards models.Stat. Med. 24 (2005), 1713-1723. MR 2137646, 10.1002/sim.2059
Reference: [6] Brazzale, A. R., Valentina, M.: Likelihood asymptotics in nonregular settings: A review with emphasis on the likelihood ratio.Working Paper Series 4 (2018), 45 pages Available at http://paduaresearch.cab.unipd.it/11306/\kern0pt.
Reference: [7] Breslow, N.: Discussion of Professor Cox's paper.J. R. Stat. Soc., Ser. B 34 (1972), 216-217. Zbl 0243.62041, MR 0341758
Reference: [8] Brown, L. D., Cai, T. T., DasGupta, A.: Interval estimation for a binomial proportion.Stat. Sci. 16 (2001), 101-133. Zbl 1059.62533, MR 1861069, 10.1214/ss/1009213286
Reference: [9] Buse, A.: The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note.Am. Stat. 36 (1982), 153-157. 10.2307/2683166
Reference: [10] Chandra, T. K., Joshi, S. N.: Comparison of likelihood ratio, Rao's and Wald's tests and a conjecture of C. R. Rao.Sankhy$\bar a$, Ser. A 45 (1983), 226-246. Zbl 0563.62018, MR 0748461
Reference: [11] Cox, D. R., Oakes, D.: Analysis of Survival Data.Monographs on Statistics and Applied Probability. Chapman & Hall, London (1984). MR 0751780, 10.1201/9781315137438
Reference: [12] Crumer, A. M.: Comparison Between Weibull and Cox Proportional Hazards Models.Kansas State University, Manhattan (2011), Available at https://core.ac.uk/download/pdf/5172563.pdf\kern0pt.
Reference: [13] Efron, B.: The efficiency of Cox's likelihood function for censored data.J. Am. Stat. Assoc. 72 (1977), 557-565. Zbl 0373.62020, MR 0451514, 10.2307/2286217
Reference: [14] Fišerová, E., Chvosteková, M., Bělašková, S., Bumbálek, M., Joska, Z.: Survival analysis of factors influencing cyclic fatigue of nickel-titanium endodontic instruments.Adv. Mater. Sci. Engineer. 2015 (2015), Article ID 189703, 6 pages. 10.1155/2015/189703
Reference: [15] Fraser, D. A. S., Wu, J., Wong, A. C. M.: An approximation for noncentral chi-squared distribution.Commun. Stat., Simulation Comput. 27 (1998), 275-287. Zbl 0929.62011, MR 1625949, 10.1080/03610919808813480
Reference: [16] Gudicha, D. W., Schmittmann, V. D., Vermunt, J. K.: Statistical power of likelihood ratio and Wald test in latent class models with covariates.Behavior Research Methods 49 (2017), 1824-1837. 10.3758/s13428-016-0825-y
Reference: [17] D. W. Hosmer, Jr., S. Lemeshow: Applied Survival Analysis: Regression Modeling of Time to Event Data.Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1999). Zbl 0966.62071, MR 1674644, 10.1002/9780470258019
Reference: [18] Ihwah, A.: The use of Cox regression model to analyze the factors that influence consumer purchase decision on a product.Agriculture and Agricultural Science Procedia 3 (2015), 78-83. 10.1016/j.aaspro.2015.01.017
Reference: [19] Lawless, J. F.: Statistical Models and Methods for Lifetime Data.Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2003). Zbl 1015.62093, MR 1940115, 10.1002/9781118033005
Reference: [20] Lee, E. T., Go, O. T.: Survival analysis in public health research.Annu. Rev. Public Health 18 (1997), 105-134. 10.1146/annurev.publhealth.18.1.105
Reference: [21] Lugannani, R., Rice, S.: Saddle point approximation for the distribution of the sum of independent random variables.Adv. Appl. Probab. 12 (1980), 475-490. Zbl 0425.60042, MR 0569438, 10.2307/1426607
Reference: [22] Pierce, D. A., Bellio, R.: Beyond first-order asymptotics for Cox regression.Bernoulli 21 (2015), 401-419. Zbl 1388.62051, MR 3322324, 10.3150/13-BEJ572
Reference: [23] Qian, J., Li, B., Chen, P.: Generating survival data in the simulation studies of Cox model.Third International Conference on Information and Computing IEEE, Los Alamitos (2010), 93-96. 10.1109/ICIC.2010.294
Reference: [24] Schemper, M.: Cox analysis of survival data with non-proportional hazard functions.J. R. Stat. Soc., Ser. D 41 (1992), 455-465. 10.2307/2349009
Reference: [25] Sen, P. K., Singer, J. M.: Large Sample Methods in Statistics: An Introduction With Applications.Chapman & Hall, New York (1993). Zbl 0867.62003, MR 1293125, 10.1201/9780203711606
Reference: [26] Skovgaard, I. M.: An explicit large-deviation approximation to one-parameter tests.Bernoulli 2 (1996), 145-165. Zbl 1066.62508, MR 1410135, 10.2307/3318548
Reference: [27] Skovgaard, I. M.: Likelihood asymptotics.Scand. J. Stat. 28 (2001), 3-32. Zbl 0965.62014, MR 1844348, 10.1111/1467-9469.00223
Reference: [28] Wan, F.: Simulating survival data with predefined censoring rates for proportional hazards models.Stat. Med. 36 (2017), 838-854. MR 3597660, 10.1002/sim.7178
Reference: [29] Yi, Y., Wang, X.: Comparison of Wald, score, and likelihood ratio tests for response adaptive designs.J. Stat. Theory Appl. 10 (2011), 553-569. MR 2907394
Reference: [30] Zhang, J., Boos, D. D.: Adjusted power estimates in Monte Carlo experiments.Commun. Stat., Simulation Comput. 23 (1994), 165-173. Zbl 0825.62018, 10.1080/03610919408813162
Reference: [31] Zhang, J., Kolassa, J. E.: A comparison of the accuracy of saddlepoint conditional cumulative distribution function approximations.Complex Datasets and Inverse Problems: Tomography, Networks and Beyond IMS Lecture Notes Monograph Series 54, Institute of Mathematical Statistics, Beachwood (2007), 250-259. MR 2459193, 10.1214/074921707000000193
.

Files

Files Size Format View
AplMat_65-2020-3_2.pdf 349.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo