Previous |  Up |  Next

Article

Title: Empirical regression quantile processes (English)
Author: Jurečková, Jana
Author: Picek, Jan
Author: Schindler, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 3
Year: 2020
Pages: 257-269
Summary lang: English
.
Category: math
.
Summary: We address the problem of estimating quantile-based statistical functionals, when the measured or controlled entities depend on exogenous variables which are not under our control. As a suitable tool we propose the empirical process of the average regression quantiles. It partially masks the effect of covariates and has other properties convenient for applications, e.g.\ for coherent risk measures of various types in the situations with covariates. (English)
Keyword: averaged regression quantile
Keyword: one-step regression quantile
Keyword: $R$-estimator
Keyword: functionals of the quantile process
MSC: 49M29
MSC: 62G30
MSC: 62J02
MSC: 65K05
MSC: 90C05
idZBL: 07217109
idMR: MR4114251
DOI: 10.21136/AM.2020.0295-19
.
Date available: 2020-06-10T13:09:42Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148142
.
Reference: [1] G. W. Bassett, Jr.: A property of the observations fit by the extreme regression quantiles.Comput. Stat. Data Anal. 6 (1988), 353-359. Zbl 0726.62104, MR 0947589, 10.1016/0167-9473(88)90075-8
Reference: [2] G. W. Bassett, Jr., R. Koenker: An empirical quantile function for linear models with iid errors.J. Am. Stat. Assoc. 77 (1982), 405-415. Zbl 0493.62047, MR 0664682, 10.2307/2287261
Reference: [3] Gutenbrunner, C., Jurečková, J.: Regression rank scores and regression quantiles.Ann. Stat. 20 (1992), 305-330. Zbl 0759.62015, MR 1150346, 10.1214/aos/1176348524
Reference: [4] Hájek, J.: Extension of the Kolmogorov-Smirnov test to regression alternatives.Proceedings of the International Research Seminar L. LeCam University of California Press, Berkeley (1965), 45-60. Zbl 0142.15802, MR 0198622, 10.1007/978-3-642-99884-3_6
Reference: [5] Jaeckel, L. A.: Estimating regression coefficients by minimizing the dispersion of the residuals.Ann. Math. Stat. 43 (1972), 1449-1458. Zbl 0277.62049, MR 0348930, 10.1214/aoms/1177692377
Reference: [6] Jurečková, J.: Averaged extreme regression quantile.Extremes 19 (2016), 41-49. Zbl 1382.60079, MR 3454030, 10.1007/s10687-015-0232-2
Reference: [7] Jurečková, J., Picek, J.: Two-step regression quantiles.Sankhy$\bar a$ 67 (2005), 227-252. Zbl 1193.62114, MR 2208888
Reference: [8] Jurečková, J., Picek, J.: Averaged regression quantiles.Contemporary Developments in Statistical Theory S. Lahiri et al. Springer Proceedings in Mathematics and Statistics 68, Springer, Cham (2014), 203-216. Zbl 06312425, MR 3149923, 10.1007/978-3-319-02651-0_12
Reference: [9] Jurečková, J., Picek, J., Schindler, M.: Robust Statistical Methods With R.CRC Press, Boca Raton (2019). Zbl 1411.62003, MR 3967085, 10.1201/b21993
Reference: [10] Jurečková, J., Sen, P. K., Picek, J.: Methodology in Robust and Nonparametric Statistics.CRC Press, Boca Raton (2013). Zbl 1281.62127, MR 2963549, 10.1201/b12681
Reference: [11] Kloke, J. D., McKean, J. W.: Rfit: Rank-based estimation for linear models.The R Journal 4 (2012), 57-64. 10.32614/RJ-2012-014
Reference: [12] Koenker, R.: Quantile Regression.Econometric Society Monographs 38, Cambridge University Press, Cambridge (2005). Zbl 1111.62037, MR 2268657, 10.1017/CBO9780511754098
Reference: [13] Koenker, R.: quantreg: Quantile Regression. R package version 5.51.Available at https://CRAN.R-project.org/package=quantreg.
Reference: [14] R. Koenker, G. Bassett, Jr.: Regression quantiles.Econometrica 46 (1978), 33-50. Zbl 0373.62038, MR 0474644, 10.2307/1913643
Reference: [15] Portnoy, S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles.Robust and Nonlinear Time Series Analysis J. Franke et al. Lecture Notes in Statistics 26, Springer, New York (1984), 231-245. Zbl 0568.62065, MR 0786311, 10.1007/978-1-4615-7821-5_13
Reference: [16] Portnoy, S.: Asymptotic behavior of the number of regression quantile breakpoints.SIAM J. Sci. Stat. Comput. 12 (1991), 867-883. Zbl 0736.62061, MR 1102413, 10.1137/0912047
Reference: [17] Ruppert, D., Carroll, R. J.: Trimmed least squares estimation in the linear model.J. Am. Stat. Assoc. 75 (1980), 828-838. Zbl 0459.62055, MR 0600964, 10.2307/2287169
.

Files

Files Size Format View
AplMat_65-2020-3_4.pdf 522.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo