Previous |  Up |  Next

Article

Title: Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences (English)
Author: Hashim, Hayder R.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 1
Year: 2020
Pages: 55-66
Summary lang: English
.
Category: math
.
Summary: Consider the system $x^2-ay^2=b$, $P(x,y)= z^2$, where $P$ is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya's procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7X^2+Y^7=Z^2$ if $(X,Y)=(L_n,F_n)$ (or $(X,Y)=(F_n,L_n)$) where $\{F_n\}$ and $\{L_n\}$ represent the sequences of Fibonacci numbers and Lucas numbers respectively. (English)
Keyword: Lucas sequences
Keyword: Diophantine equations
Keyword: Pell equations
MSC: 11B39
MSC: 11D41
idZBL: Zbl 07368973
idMR: MR4124290
.
Date available: 2020-07-22T11:51:40Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148261
.
Reference: [1] Muriefah, F.S. Abu, Rashed, A. Al: The simultaneous Diophantine equations $y^{2}-5x^{2}=4$ and $z^{2}-442x^{2}=441$.Arabian Journal for Science and Engineering, 31, 2, 2006, 207-211, MR 2284646
Reference: [2] Baker, A.: Linear forms in the logarithms of algebraic numbers (IV).Mathematika, 15, 2, 1968, 204-216, London Mathematical Society, MR 0258756, 10.1112/S0025579300002588
Reference: [3] Baker, A., Davenport, H.: The equations $3x^{2}-2= y^{2}$ and $8x^{2}-7= z^{2}$.Quart. J. Math. Oxford, 20, 1969, 129-137, MR 0248079
Reference: [4] Brown, E.: Sets in which $xy+k$ is always a square.Mathematics of Computation, 45, 172, 1985, 613--620, MR 0804949
Reference: [5] Cohn, J.H.E.: Lucas and Fibonacci numbers and some Diophantine equations.Glasgow Mathematical Journal, 7, 1, 1965, 24-28, Cambridge University Press, MR 0177944
Reference: [6] Copley, G.N.: Recurrence relations for solutions of Pell's equation.The American Mathematical Monthly, 66, 4, 1959, 288-290, JSTOR, MR 0103168, 10.2307/2309637
Reference: [7] Darmon, H., Granville, A.: On the equations $z^{m}= f (x, y)$ and $ax^{p}+ by^{q}= cz^{r}$.Bulletin of the London Mathematical Society, 27, 6, 1995, 513-543, Wiley Online Library, MR 1348707
Reference: [8] Grinstead, C.M.: On a method of solving a class of Diophantine equations.Mathematics of Computation, 32, 143, 1978, 936-940, MR 0491480, 10.1090/S0025-5718-1978-0491480-0
Reference: [9] Kedlaya, K.: Solving constrained Pell equations.Mathematics of Computation, 67, 222, 1998, 833-842, MR 1443123, 10.1090/S0025-5718-98-00918-1
Reference: [10] Mohanty, S.P., Ramasamy, A.M.S.: The simultaneous diophantine equations $5y^{2}- 20= x^{2}$ and $2y^{2}+ 1= z^{2}$.Journal of Number Theory, 18, 3, 1984, 356-359, Elsevier, MR 0746870
Reference: [11] Mordell, L.J.: Diophantine equations.Pure and Applied Mathematics, 30, 1969, Academic Press, MR 0249355
Reference: [12] Peker, B., Cenberci, S.: On the equations $y^2-10x^2=9$ and $z^2-17x^2=16$.International Mathematical Forum, 12, 15, 2017, 715-720, 10.12988/imf.2017.7651
Reference: [13] Siegel, C.L.: Über einige Anwendungen diophantischer Approximationen.On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2, 2014, 81-138, Edizioni della Normale, Pisa, MR 3330350
Reference: [14] Szalay, L.: On the resolution of simultaneous Pell equations.Annales Mathematicae et Informaticae, 34, 2007, 77-87, MR 2385427
Reference: [15] Thue, A.: Über Ann{ä}herungswerte algebraischer Zahlen.Journal für die Reine und Angewandte Mathematik, 135, 1909, 284-305, MR 1580770
.

Files

Files Size Format View
ActaOstrav_28-2020-1_5.pdf 386.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo