Previous |  Up |  Next

Article

Title: Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks (English)
Author: Yang, Yang
Author: Meng, Qing
Author: Yue, Dong
Author: Zhang, Tengfei
Author: Zhao, Bo
Author: Hou, Xiaolei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 2
Year: 2020
Pages: 298-322
Summary lang: English
.
Category: math
.
Summary: We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy. (English)
Keyword: networked control system
Keyword: secure control
Keyword: adaptive control
Keyword: dynamic surface control
MSC: 93A15
MSC: 93D15
MSC: 93D21
idZBL: Zbl 07250726
idMR: MR4103719
DOI: 10.14736/kyb-2020-2-0298
.
Date available: 2020-09-02T09:07:54Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148302
.
Reference: [1] An, L., Yang, G. H.: Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks..IEEE Trans. Cybernet. 49 (2019), 3, 827-838. 10.1109/tcyb.2017.2787740
Reference: [2] Boubakir, A., Labiod, S., Boudjema, F.: Linear adaptive control of a class of SISO nonaffine nonlinear systems..Int. J. Systems Sci. 45 (2014), 12, 2490-2498. MR 3233170, 10.1080/00207721.2013.772259
Reference: [3] Chen, W., Ding, D., Ge, X., Han, Q. L., Wei, G.: $H_{\infty}$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. (2018) 1-11. 10.1109/tcyb.2018.2885567
Reference: [4] Chen, B., Zhang, H., Lin, C.: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form..IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98. MR 3465627, 10.1109/tnnls.2015.2412121
Reference: [5] Gahinet, P., Nemirovskii, A., Laub, A. J.: The LMI control toolbox..In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041. 10.1109/cdc.1994.411440
Reference: [6] Ge, X., Han, Q. L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies..IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. 10.1109/tcyb.2016.2570860
Reference: [7] Ding, L., Han, Q. L., Ge, X.: An overview of recent advances in event-triggered consensus of multiagent systems..IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. MR 3554944, 10.1109/tcyb.2017.2771560
Reference: [8] Ding, D., Wang, Z., Han, Q. L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols..IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. 10.1109/tcyb.2018.2827037
Reference: [9] Dolk, V. S., Tesi, P., Persis, C. D.: Event-triggered control systems under denial-of-service attacks..IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105. MR 3632431, 10.1109/tcns.2016.2613445
Reference: [10] Ge, X., Han, Q. L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernetics 49 (2019), 1, 171-183. MR 4101428, 10.1109/tcyb.2017.2769722
Reference: [11] Ge, X., Han, Q. L., Zhang, X. M.: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays..IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426. 10.1109/tie.2017.2752148
Reference: [12] Hu, S., Yue, D., Xie, X.: Resilient event-triggered controller synthesis of networked control systems under periodic dos jamming attacks..IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281. 10.1109/tcyb.2018.2861834
Reference: [13] Ding, D., Han, Q. L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. 10.1109/tii.2019.2905295
Reference: [14] Farraj, A., Hammad, E., Kundur, D.: A cyber-physical control framework for transient stability in smart grids..IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215. 10.1109/tsg.2016.2581588
Reference: [15] Ge, X., Han, Q. L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks..IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159. 10.1109/tcyb.2017.2789296
Reference: [16] Kulkarni, A., Purwar, S.: Adaptive nonlinear gain based composite nonlinear feedback controller with input saturation..IMA J. Math. Control Inform. 3 (2018), 35, 757-771. MR 3858289, 10.1093/imamci/dnw075
Reference: [17] Li, Y., Tong, S.: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays..Inform. Sci. 29 (2015), 125-142. MR 3267054, 10.1016/j.ins.2014.08.060
Reference: [18] Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems..IEEE Trans. Cybernet. 45 (2014), 1, 138-149. 10.1109/tcyb.2014.2333738
Reference: [19] Liu, X., Sun, X.: Non-fragile recursive sliding mode dynamic surface control with adaptive neural network..Control Theory Appl. 30 (2013), 10, 1323-1328.
Reference: [20] Liu, X., Sun, X.: Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains..Acta Automat. Sinica 40 (2014), 10, 2193-2202.
Reference: [21] Lu, A. Y., Yang, G. H.: Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service..IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820. MR 3807663, 10.1109/tac.2017.2751999
Reference: [22] Lv, C., Liu, Y., Hu, X.: Simultaneous observation of hybrid states for cyber-physical systems: A case study of electric vehicle powertrain..IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367. 10.1109/tcyb.2017.2738003
Reference: [23] Niu, B., Li, H., Qin, T.: Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input..IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688. 10.1109/tsmc.2017.2696710
Reference: [24] Otto, J., Vogel-Heuser, B., Niggemann, O.: Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing..IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282. 10.1109/tii.2017.2718729
Reference: [25] Persis, C. D., Tesi, P.: Input-to-state stabilizing control under denial-of-service..IEEE Trans. Automat. Control. 60 (2015), 11, 2930-2944. MR 3419582, 10.1109/tac.2015.2416924
Reference: [26] Qin, J., Li, M., Shi, L.: Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks..IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663. MR 3807654, 10.1109/tac.2017.2756259
Reference: [27] Shen, Z.: Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer..Control Theory Appl. 35 (2018), 8, 1092-1100.
Reference: [28] Shen, Z., Zhang, X.: Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains..Acta Automat. Sinica 44 (2018), 10, 1833-1841.
Reference: [29] Shi, X., Lim, C. C., Shi, P.: Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone..IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213. MR 3867838, 10.1109/tnnls.2018.2793968
Reference: [30] Sun, H., Peng, C., Zhang, W.: Security-based resilient event-triggered control of networked control systems under denial of service attacks..J. Franklin Inst. 356 (2018), 17, 10277-10295. MR 4034978, 10.1016/j.jfranklin.2018.04.001
Reference: [31] Sun, Y. C., Yang, G. H.: Periodic event-triggered resilient control for cyber-physical systems under denial-of-service attacks..J. Franklin Inst. 355 (2018), 13, 5613-5631. MR 3835109, 10.1016/j.jfranklin.2018.06.009
Reference: [32] Sun, Y. C., Yang, G. H.: Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks..Inform. Sci. 465 (2018), 340-352. MR 3846182, 10.1016/j.ins.2018.07.030
Reference: [33] Swaroop, D., Hedrick, J. K., Yip, P. P.: Dynamic surface control for a class of nonlinear systems..IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899. MR 1795360, 10.1109/tac.2000.880994
Reference: [34] Tian, E., Wang, Z., Zou, L., Yue, D.: Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case..Automatica 107 (2019), 296-305. MR 3959670, 10.1016/j.automatica.2019.05.039
Reference: [35] Tian, E., Wang, Z., Zou, L., Yue, D.: Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication..Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498. MR 3915146, 10.1002/rnc.4447
Reference: [36] Tong, S., Li, Y., Jing, X.: Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer..Inform. Sci. 235 (2013), 287-307. MR 3042302, 10.1016/j.ins.2013.02.033
Reference: [37] Wang, Y., Gao, Y., Karimi, H. R.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit..IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675. 10.1109/tsmc.2017.2720968
Reference: [38] Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form..IEEE Trans. Neural Networks 16 (2005), 1, 195-202. 10.1109/tnn.2004.839354
Reference: [39] Wu, L., Gao, Y., Liu, J.: Event-triggered sliding mode control of stochastic systems via output feedback..Automatica 82 (2017), 79-92. MR 3658743, 10.1016/j.automatica.2017.04.032
Reference: [40] Xu, L., Guo, Q., Yang, T.: Robust routing optimization for smart grids considering cyber-physical interdependence..IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629. 10.1109/tsg.2018.2888629
Reference: [41] Ye, X.: Global adaptive control of nonlinearly parametrized systems..IEEE Trans. Automat. Control 48 (2003), 1, 169-173. MR 1950330, 10.1109/tac.2002.804464
Reference: [42] Yang, J., Chen, Y., Cui, L.: Multiple-mode adaptive state estimator for nonlinear switched systems..Int. Control Automat. Syst. 15 (2017), 4, 1485-1493. 10.1007/s12555-016-0331-0
Reference: [43] Yu, J., Ma, Y., Yu, H.: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping..Inform. Sci. 376 (2017), 172-189. 10.1016/j.ins.2016.10.018
Reference: [44] Yu, Q., Wu, B.: Robust stability analysis of uncertain switched linear systems with unstable subsystems..Int. J. Systems Sci. 46 (2015), 7, 1278-1287. MR 3298169, 10.1080/00207721.2013.816089
Reference: [45] Zhai, D., An, L., Dong, J.: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching..IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597. 10.1109/tfuzz.2017.2686378
Reference: [46] Zhai, G., Hu, B., Yasuda, K.: Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach..Int. J. Systems Sci. 32 (2001), 8, 1055-1061. MR 1958764, 10.1080/00207720116692
Reference: [47] Zhai, D., Xi, C., An, L.: Prescribed performance switched adaptive dynamic surface control of switched nonlinear systems with average dwell time..IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269. 10.1109/tsmc.2016.2571338
Reference: [48] Zhang, H., Cheng, P., Shi, L.: Optimal denial-of-service attack scheduling with energy constraint..IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028. MR 3419593, 10.1109/tac.2015.2409905
Reference: [49] Zhang, T. P., Ge, S. S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form..Automatica 44 (2008), 7, 1895-1903. MR 2528143, 10.1016/j.automatica.2007.11.025
Reference: [50] Zhang, X. M., Han, Q. L., Ge, X.: Networked control systems: A survey of trends and techniques..IEEE/CAA J. Automat. Sinica (2019), 1-17. MR 3841465, 10.1109/jas.2019.1911651
Reference: [51] Zhang, T., Xia, M., Yi, Y.: Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties..IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387. MR 3654606, 10.1109/tsmc.2017.2675540
Reference: [52] Zuo, Z., Han, Q. L., Ning, B.: An overview of recent advances in fixed-time cooperative control of multi-agent systems..IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334. MR 3932129, 10.1109/tii.2018.2817248
Reference: [53] Zou, A. M., Hou, Z. G., Tan, M.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach..IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897. 10.1109/tfuzz.2008.917301
.

Files

Files Size Format View
Kybernetika_56-2020-2_6.pdf 1.241Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo