Previous |  Up |  Next

Article

Title: Consensus of a multi-agent systems with heterogeneous delays (English)
Author: Rehák, Branislav
Author: Lynnyk, Volodymyr
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 2
Year: 2020
Pages: 363-381
Summary lang: English
.
Category: math
.
Summary: The paper presents an algorithm for the solution of the consensus problem of a linear multi-agent system composed of identical agents. The control of the agents is delayed, however, these delays are, in general, not equal in all agents. The control algorithm design is based on the $H_\infty$-control, the results are formulated by means of linear matrix inequalities. The dimension of the resulting convex optimization problem is proportional to the dimension of one agent only but does not depend on the number of agents, hence this problem is computationally tractable. It is shown that heterogeneity of the delays in the control loop can cause a steady error in the synchronization. Magnitude of this error is estimated. The results are illustrated by two examples. (English)
Keyword: multi-agent system
Keyword: time delay system
Keyword: robust control
Keyword: LMI
MSC: 93A14
MSC: 93B36
idZBL: Zbl 07250729
idMR: MR4103722
DOI: 10.14736/kyb-2020-2-0363
.
Date available: 2020-09-02T09:12:25Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148305
.
Reference: [1] Abdessameud, A., Polushin, I. G., Tayebi, A.: Distributed coordination of dynamical multi-agent systems under directed graphs and constrained information exchange..IEEE Trans. Automat. Control 62 (2017), 4, 1668-1683. MR 3636325, 10.1109/TAC.2016.2609498
Reference: [2] Bakule, L., Sen, M. de la, Papík, M., Rehák, B.: Decentralized stabilization of complex systems with delayed feedback..In: Proc. 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications LSS 2013, Shanghai, pp. 31-36, Shanghai. 10.1109/acc.2013.6580888
Reference: [3] Bakule, L., Papík, M., Rehák, B.: Decentralized $H$-infinity control of complex systems with delayed feedback..Automatica 67 (2016), 127-131. MR 3471755, 10.1016/j.automatica.2016.01.013
Reference: [4] Chen, N., Zhai, G., Gui, W., Yang, C., Liu, W.: Decentralized Hinf quantisers design for uncertain interconnected networked systems..IET Control Theory Appl. 4 (2008), 177-183. MR 2640374, 10.1016/j.automatica.2016.01.013
Reference: [5] Fiengo, G., Lui, D. Giuseppe, Petrillo, A., Santini, S.: Distributed leader-tracking adaptive control for high-order nonlinear lipschitz multi-agent systems with multiple time-varying communication delays..Int. J. Control (2019), 1-13. 10.1080/00207179.2019.1683608
Reference: [6] Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems..Europ. J. Control 20 (204), 271-283. MR 3283869, 10.1016/j.ejcon.2014.10.001
Reference: [7] Fridman, E.: Introduction to Time-Delay Systems..Birkhäuser, Basel 2015. MR 3237720
Reference: [8] Hengster-Movric, K., Lewis, F. L., Šebek, M., Vyhlídal, T.: Cooperative synchronization control for agents with control delays: A synchronizing region approach..J. Franklin Inst. 352 (2015), 5, 2002-2028. MR 3334125, 10.1016/j.jfranklin.2015.02.011
Reference: [9] Hou, W., Fu, M., Zhang, H., Wu, Z.: Consensus conditions for general second-order multi-agent systems with communication delay..Automatica 75 (2017), 293-298. MR 3582183, 10.1016/j.automatica.2016.09.042
Reference: [10] Hou, W., Fu, M. Y., Zhang, H.: Consensusability of linear multi-agent systems with time delay..Int. J. Robust Nonlinear Control 26 (2015), 12, 2529-2541. MR 3520920, 10.1002/rnc.3458
Reference: [11] Li, L., Fu, M., Zhang, H., Lu, R.: Consensus control for a network of high order continuous-time agents with communication delays..Automatica 89 (2018), 144-150. MR 3762042, 10.1016/j.automatica.2017.12.006
Reference: [12] Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J.: Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach..IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR 3891660, 10.1109/tcyb.2018.2818941
Reference: [13] Li, Q., Wang, Z., Sheng, W., Alsaadi, F. E., Alsaadi, F. E.: Dynamic event-triggered mechanism for $h_{\infty}$ non-fragile state estimation of complex networks under randomly occurring sensor saturations..Inform. Sci. 509 (2020), 304-316. MR 4009557, 10.1016/j.ins.2019.08.063
Reference: [14] Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint..IEEE Trans. Circuits Systems I: Regular Papers 57 (2010), 1, 213-224. MR 2729823, 10.1109/tcsi.2009.2023937
Reference: [15] Lin, P., Dai, M., Song, Y.: Consensus stability of a class of second-order multi-agent systems with nonuniform time-delays..J. Franklin Inst. 351 (2014), 3, 1571-1576. MR 3165212, 10.1016/j.jfranklin.2013.11.015
Reference: [16] Lin, P., Qin, K., Zhao, H., Sun, M.: A new approach to average consensus problems with multiple time-delays and jointly-connected topologies..J. Franklin Inst. 349 (2012), 1, 293-304. MR 2874739, 10.1016/j.jfranklin.2011.11.002
Reference: [17] Meng, Z., Yang, T., Li, G., Ren, W., Wu, D.: Synchronization of coupled dynamical systems: Tolerance to weak connectivity and arbitrarily bounded time-varying delays..IEEE Trans. Automat. Control 63 (2018), 6, 1791-1797. MR 3807661, 10.1109/TAC.2017.2754219
Reference: [18] Petrillo, A., Salvi, A., Santini, S., Valente, A. Saverio: Adaptive synchronization of linear multi-agent systems with time-varying multiple delays..J. Franklin Inst. 354 (2017), 18, 8586-8605. MR 3732306, 10.1016/j.jfranklin.2017.10.015
Reference: [19] Qian, W., Gao, Y., Wang, L., Fei, S.: Consensus of multiagent systems with nonlinear dynamics and time-varying communication delays..Int. J. Robust Nonlinear Control 29 (2019), 6, 1926-1940. MR 3934402, 10.1002/rnc.4471
Reference: [20] Rehák, B.: Observer design for a time delay system via the Razumikhin approach..Asian J. Control 19 (2017), 6, 2226-2231. MR 3730209, 10.1002/asjc.1507
Reference: [21] Rehák, B., Lynnyk, V.: Network-based control of nonlinear large-scale systems composed of identical subsystems..J. Franklin Inst. 356 (2019), 2, 1088-1112. MR 3912566, 10.1016/j.jfranklin.2018.05.008
Reference: [22] Rehák, B., Lynnyk, V.: Synchronization of symmetric complex networks with heterogeneous time delays..In: 2019 22nd International Conference on Process Control (PC19), pp. 68-73. 10.1109/pc.2019.8815036
Reference: [23] Yao, X.-Y., Ding, H.-F., Ge, M.-F.: Synchronization control for multiple heterogeneous robotic systems with parameter uncertainties and communication delays..J. Franklin Inst. 356 (2019), 16, 9713-9729. MR 4025644, 10.1016/j.jfranklin.2018.10.041
Reference: [24] Zhang, L., Orosz, G.: Consensus and disturbance attenuation in multi-agent chains with nonlinear control and time delays..Int. J. Robust Nonlinear Control 27 (2017), 5, 781-803. MR 3608606, 10.1002/rnc.3600
Reference: [25] Zhang, M., Saberi, A., Stoorvogel, A. A.: Synchronization in the presence of unknown, nonuniform and arbitrarily large communication delay..Europ. J. Control 38 (2017), 63 -72. MR 3719912, 10.1016/j.ejcon.2017.08.005
.

Files

Files Size Format View
Kybernetika_56-2020-2_9.pdf 1.061Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo