Previous |  Up |  Next

Article

Title: A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints (English)
Author: Ezazipour, Soraya
Author: Golbabai, Ahmad
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 383-409
Summary lang: English
.
Category: math
.
Summary: This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems. (English)
Keyword: neural network
Keyword: mathematical programming with equilibrium constraints
Keyword: asymptotically stability
Keyword: globally convergence
MSC: 90C26
MSC: 90C33
idZBL: Zbl 07250730
idMR: MR4131736
DOI: 10.14736/kyb-2020-3-0383
.
Date available: 2020-09-02T09:14:59Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148306
.
Reference: [1] Andreani, R., Martínez, J. M.: On the solution of mathematical programming problems with equilibrium constraints..Math. Methods Oper. Res. 54 (2001), 345-359. MR 1890905, 10.1007/s001860100158
Reference: [2] Aiyoshi, E., Shimizu, K.: Hierarchical decentralized systems and its new solution by a barrier method..IEEE Trans. Systems Man Cybernet. 11 (1981), 444-449. MR 0631815, 10.1109/tsmc.1981.4308712
Reference: [3] Bard, J. F.: Convex two-level optimization..Math. Program. 40 (1988), 15-27. MR 0923693, 10.1109/tsmc.1981.4308712
Reference: [4] Chen, J. S.: On some NCP-functions based on the generalized Fischer-Burmeister function..Asia-Pacific J. Oper. Res. 24 (2007), 401-420. MR 2335554, 10.1142/s0217595907001292
Reference: [5] Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints..Math. Program. 85 (1999), 107-134. Zbl 0959.65079, MR 1689366, 10.1007/s10107990015a
Reference: [6] Ferris, M. C., Dirkse, S. P., Meeraus, A.: Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization..Frontiers in Applied General Equilibrium Modeling, Cambridge University Press 2002, pp. 67-94. 10.1017/cbo9780511614330.005
Reference: [7] Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints..SIAM J. Optim. 17 (2006), 259-286. Zbl 1112.90098, MR 2219153, 10.1137/s1052623402407382
Reference: [8] Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm..SIAM J. Optim. 7 (1997), 225-247. MR 1430565, 10.1137/s1052623494279110
Reference: [9] Guo, L., Lin, G. H., Ye, J. J.: Solving mathematical programs with equilibrium constraints..J. Optim. Theory Appl. 166 (2015), 234-256. MR 3366112, 10.1007/s10957-014-0699-z
Reference: [10] Golbabai, A., Ezazipour, S.: A high-performance nonlinear dynamic scheme for the solution of equilibrium constrained optimization problems..Expert Systems Appl. 82 (2017), 291-300. 10.1016/j.eswa.2017.04.016
Reference: [11] He, X., Li, C., Huang, T., Li, C. H.: Neural network for solving convex quadratic bilevel programming problems..Neural Networks 51 (2014), 17-25. 10.1016/j.neunet.2013.11.015
Reference: [12] Hopfiel, J. J., Tank, D. W.: Neural computation of decisions in optimization problems..Biol. Cybernet. 52 (1985), 141-152. MR 0824597, 10.1016/0096-3003(85)90004-9
Reference: [13] Hosseini, A., Hosseini, S. M.: A new steepest descent differential inclusion-based method for solving general nonsmooth convex optimization problems..J. Optim. Theory Appl. 159 (2013), 698-720. MR 3124992, 10.1007/s10957-012-0258-4
Reference: [14] Hosseinipour-Mahani, N., Malek, A.: A neurodynamic optimization technique based on overestimator and underestimator functions for solving a class of non-convex optimization problems..Math. Comput. Simul. 122 (2016), 20-34. MR 3436939, 10.1016/j.matcom.2015.09.013
Reference: [15] Hosseinipour-Mahani, N., Malek, A.: Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique..Kybernetika 51 (2015), 890-908. MR 3445990, 10.14736/kyb-2015-5-0890
Reference: [16] Huang, X. X., Yang, X. Q., Teo, K. L.: Partial augmented Lagrangian method and mathematical programs with complementarity constraints..Global Optim. 35 (2006), 235-254. MR 2242014, 10.1007/s10898-005-3837-1
Reference: [17] Jane, J. Y.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints..Math. Anal. Appl. 307 (2005), 350-369. MR 2138995, 10.1016/j.jmaa.2004.10.032
Reference: [18] Kočvara, M., Outrata, J.: Optimization problems with equilibrium constraints and their numerical solution..Math. Program. 101 (2004), 119-149. MR 2085261, 10.1007/s10107-004-0539-2
Reference: [19] Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties..SIAM J. Optim. 23 (2013), 770-798. Zbl 1282.65069, MR 3045664, 10.1137/100802487
Reference: [20] Luenberger, D. G., Ye, Y.: Linear and Nonlinear Programming..Springer Science and Business Media, 233 Spring Street, New York 2008. MR 2423726, 10.1007/978-0-387-74503-9
Reference: [21] Luo, Z. Q., Pang, J. S., Ralph, D.: Mathematical Programs with Equilibrium Constraints..Cambridge University Press, Cambridge 1996. Zbl 1139.90003, MR 1419501, 10.1017/cbo9780511983658
Reference: [22] Lan, K. M., Wen, U. P., Shih, H. S., Lee, E. S.: A hybrid neural network approach to bilevel programming problems..Appl. Math. Lett. 20 (2007), 880-884. MR 2323126, 10.1016/j.aml.2006.07.013
Reference: [23] Li, J., Li, C., Wu, Z., Huang, J.: A feedback neural network for solving convex quadratic bi-level programming problems..Neural Comput. Appl. 25 (2014), 603-611. 10.1007/s00521-013-1530-8
Reference: [24] Liu, Q., Wang, J.: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints..IEEE Trans. Neural Networks Learning Systems 24 (2013), 812-824. MR 3453221, 10.1109/tnnls.2013.2244908
Reference: [25] Lv, Y., Chen, Z., Wan, Z.: A neural network approach for solving mathematical programs with equilibrium constraints..Expert System Appl. 38 (2011), 231-234. MR 2557563, 10.1016/j.eswa.2010.06.050
Reference: [26] Leyffer, S.: Complementarity constraints as nonlinear equations: Theory and numerical experience..In: Optimization with Multivalued Mappings (S. Dempe and V. Kalashnikov, eds.), Springer Optimization and Its Applications, vol 2. Springer, Boston 2006. MR 2243542, 10.1007/0-387-34221-4\_9
Reference: [27] Liao, L. Z., Qi, H., Qi, L.: Solving nonlinear complementarity problems with neural networks: a reformulation method approach..J. Comput. Appl. Math. 131 (2001), 343-359. MR 1835721, 10.1016/s0377-0427(00)00262-4
Reference: [28] Lillo, E. W., Loh, M. H., Hui, S., Zak, H. S.: On solving constrained optimization problems with neural networks: a penalty method approach..IEEE Trans. Neural Networks 4 (1993), 931-940. 10.1109/72.286888
Reference: [29] Lin, G. H., Fukushima, M.: New relaxation method for mathematical programs with complementarity constraints..J. Optim. Theory Appl. 118 (2003), 81-116. MR 1995697, 10.1023/a:1024739508603
Reference: [30] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Projected dynamical systems and optimization problems..Bull. Iranian Math. Soc. 37 (2011), 81-96. Zbl 1253.37091, MR 2890580
Reference: [31] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Double projection neural network for solving pseudomonotone variational inequalities..Fixed Point Theory 12 (2011), 401-418. MR 2895702
Reference: [32] Malek, A., Hosseinipour-Mahani, N., Ezazipour, S.: Efficient recurrent neural network model for the solution of general nonlinear optimization problems..Optim. Methods Software 25 (2010), 489-506. Zbl 1225.90129, MR 2724153, 10.1080/10556780902856743
Reference: [33] Morrison, D. D.: Optimization by least squares..SIAM J. Numer. Anal. 5 (1968), 83-88. MR 0226828, 10.1137/0705006
Reference: [34] Miller, R. K., Michel, A. N.: Ordinary Differential Equations..Academic Press, New York 1982. Zbl 0552.34001, MR 0660250
Reference: [35] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Theory, Applications and Numerical Results..Kluwer Academic Publishers, Dordrecht 1998. MR 1641213, 10.1007/978-1-4757-2825-5
Reference: [36] Outrata, J. V.: On optimization problems with variational inequality constraints..SIAM J. Optim. 4 (1994), 340-357. MR 1273763, 10.1137/0804019
Reference: [37] Ranjbar, M., Effati, S., Miri, S. M.: An artificial neural network for solving quadratic zero-one programming problems.Neurocomputing 235 (2017), 192-198. 10.1016/j.neucom.2016.12.064
Reference: [38] Sheng, Z., Lv, Z., Xu, Z.: A new algorithm based on the Frank-Wolfe method and neural network for a class of bilevel decision making problem..Acta Automat. Sinica 22 (1996), 657-665.
Reference: [39] Scholtes, S., Stohr, M.: Exact penalization of mathematical programs with complementarity constraints..SIAM J. Control Optim. 37 (1999), 617-652. MR 1670641, 10.1137/s0363012996306121
Reference: [40] Tank, D. W., Hopfield, J. J.: Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit..IEEE Trans. Circuits Syst. 33 (1986), 533-541. 10.1109/tcs.1986.1085953
Reference: [41] Yang, Q. X., Huang, X. X.: Lower-order penalty methods for mathematical programs with complementarity constraints..Optim. Methods Software 19 (2004), 693-720. MR 2102222, 10.1080/1055678041001697659
.

Files

Files Size Format View
Kybernetika_56-2020-3_1.pdf 2.728Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo