Previous |  Up |  Next

Article

Title: Continuous feedback stabilization for a class of affine stochastic nonlinear systems (English)
Author: Oumoun, Mohamed
Author: Maniar, Lahcen
Author: Atlas, Abdelghafour
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 500-515
Summary lang: English
.
Category: math
.
Summary: We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper. (English)
Keyword: continuous state feedback
Keyword: control stochastic nonlinear systems
Keyword: global asymptotic stability in probability
MSC: 60H10
MSC: 93C10
MSC: 93D05
MSC: 93D15
MSC: 93E15
idZBL: Zbl 07250734
idMR: MR4131740
DOI: 10.14736/kyb-2020-3-0500
.
Date available: 2020-09-02T09:22:54Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148311
.
Reference: [1] Abedi, F., Leong, W. J., Chaharborj, S. S.: On the asymptotical and practical stability of stochastic control systems..Math. Problems Engrg. (2013), 1-10. MR 3035628, 10.1155/2013/560647
Reference: [2] Artstein, Z.: Stabilization with relaxed control..Nonlinear Anal. Theory Methods Appl. 7 (1983), 1163-1173. MR 0721403, 10.1016/0362-546x(83)90049-4
Reference: [3] Chabour, R., Oumoun, M.: On a universal formula for the stabilization of control stochastic nonlinear systems..Stochast. Anal. Appl. 17 (1999), 359-368. MR 1686995, 10.1080/07362999908809606
Reference: [4] Daumail, L., Florchinger, P.: A constructive extension of Artsteins's theorem to the stochastic context..Stochast. Dynamics 2 (2002), 251-263. MR 1912143, 10.1142/s0219493702000418
Reference: [5] Deng, H., Krstic, M., Williams, R. J.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance..IEEE Trans. Automat. Control 46 (2001), 1237-1253. MR 1847327, 10.1109/9.940927
Reference: [6] Florchinger, P.: A universal formula for the stabilization of control stochastic differential equations..Stochast. Anal. Appl. 11 (1993), 155-162. MR 1214577, 10.1080/07362999308809308
Reference: [7] Florchinger, P.: A universal design of Freeman's formula for the stabilization of stochastic systems..Stochast. Anal. Appl. 34 (2016), 137-146. MR 3437083, 10.1080/07362994.2015.1108203
Reference: [8] Florchinger, P.: Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback..Kybernetika 54 (2018), 321-335. MR 3807718, 10.14736/kyb-2018-2-0321
Reference: [9] Fontbona, J., Raminez, H., Riquelme, V., Silva, F.: Stochastic modeling and control of bioreactors..IFACPapersOnLine 50 (2017), 12611-12616. 10.1016/j.ifacol.2017.08.2203
Reference: [10] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes..Amsterdam, North-Holland 1981. MR 0637061, 10.1002/bimj.4710280425
Reference: [11] Gao, F., Wu, Y., Yu, X.: Global state feedback stabilization of stochastic high-order nonlinear systems with high-order and low-order nonlinearities..Int. J. Systems Sci. 47 (2016), 16, 3846-3856. MR 3512588, 10.1080/00207721.2015.1129678
Reference: [12] Khalil, H. K.: Nonlinear Systems..Upper Saddle River, Prentice-Hall, NJ 2002. Zbl 1194.93083
Reference: [13] Khasminskii, R. Z.: Stochastic Stability of Differential Equations..Sijthoff and Noordhoff International Publishers 1980. Zbl 1241.60002, MR 0600653, 10.1007/978-3-642-23280-0
Reference: [14] Klebaner, F. C.: Introduction to Stochastic Calculus with Applications..Imperial College Press, London 2005. MR 2160228, 10.1142/p386
Reference: [15] Kushner, H. J.: Stochastic Stability and Control..Academic Press, New York 1967. MR 0216894, 10.1002/zamm.19680480428
Reference: [16] Lan, Q., Li, S.: Global output-feedback stabilization for a class of stochastic nonlinear systems via sampled-data control..Int. J. Robust Nonlinear Control 27 (2017), 3643-3658. MR 3733629, 10.1002/rnc.3758
Reference: [17] Lan, Q., Niu, H., Liu, Y., Xu, H.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems..Kybernetika 53 (2017), 780-802. MR 3750103, 10.14736/kyb-2017-5-0780
Reference: [18] Lewis, A. L.: Option Valuation Under Stochastic Volatility II..Finance Press, Newport Beach 2009. MR 3526206, 10.1111/rssa.12262
Reference: [19] Li, F., Liu, Y.: Global stability and stabilization of more general stochastic nonlinear systems..J. Math. Anal. Appl. 413 (2014), 841-855. MR 3159808, 10.1016/j.jmaa.2013.12.021
Reference: [20] Lin, Y., Sontag, E. D.: A universal formula for stabilization with bounded controls..Systems Control Lett. 16 (1991), 393-397. MR 1112756, 10.1016/0167-6911(91)90111-q
Reference: [21] Maniar, L., Oumoun, M., Vivalda, J. C.: On the stabilization of quadratic nonlinear systems..Europ. J Control 35 (2017), 28-33. MR 3648351, 10.1016/j.ejcon.2017.03.001
Reference: [22] Mao, X. R.: Stochastic Differential Equations and Their Applications..Horwood Publishing, Chichester 1997. Zbl 0892.60057, MR 1475218
Reference: [23] Mao, X., Truman, A., Yuan, C.: Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime-switching..J. Appl. Math. Stochast. Anal. (2006), 1-20. MR 2237177, 10.1155/jamsa/2006/80967
Reference: [24] Ondreját, M., Seidler, J.: A note on weak solutions to stochastic differential equations..Kybernetika 54 (2018), 888-907. MR 3893126, 10.14736/kyb-2018-5-0888
Reference: [25] Sontag, E. D.: A universal construction of Artstein's theorem on nonlinear stabilization..Systems Control Lett. 13 (1989), 117-123. MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [26] Yang, H., Kloeden, P. E., Wu, F.: Weak solution of stochastic differential equations with fractional diffusion coefficient..Stochast. Anal. Appl. 36 (2018), 4, 613-621. MR 3854532, 10.1080/07362994.2018.1434005
Reference: [27] Zha, W., Zhai, J., Fei, S.: Global adaptive control for a class of uncertain stochastic nonlinear systems with unknown output gain..Int. J. Control Automat. Systems 15 (2017), 3, 1125-1133. MR 3418397, 10.1007/s12555-016-0023-9
Reference: [28] Zhang, B. L., Han, Q. L., Zhang, X. M.: Recent advances in vibration control of offshore platforms..Nonlinear Dynamics 89 (2017), 755-771. 10.1007/s11071-017-3503-4
Reference: [29] Zhang, B. L., Han, Q. L., Zhang, X. M.: Event-triggered $H_\infty$ reliable control for offshore structures in network environments..J. Sound Vibration 368 (2016), 1-21. 10.1016/j.jsv.2016.01.008
Reference: [30] Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms..IEEE Trans. Control Systems Technol. 22 (2014), 1769-1783. 10.1109/tcst.2013.2293401
Reference: [31] Zhang, J., Liu, Y.: Continuous output-feedback stabilization for a class of stochastic high-order nonlinear systems..J. Control Theory Appl. 11 (2013), 343-350. MR 3083980, 10.1007/s11768-013-2166-z
Reference: [32] Zhang, X., Xie, X.: Global state feedback stabilization of nonlinear systems with high-order and low-order nonlinearities..Int. J. Control 87 (2014), 642-652. MR 3172535, 10.1080/00207179.2013.852252
.

Files

Files Size Format View
Kybernetika_56-2020-3_5.pdf 498.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo