Previous |  Up |  Next

Article

Title: Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation (English)
Author: Ndikubwayo, Innocent
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 793-804
Summary lang: English
.
Category: math
.
Summary: This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\{P_i\}_{i=1}^{\infty }$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the standard initial conditions $P_{0}(x)=1, P_{-1}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials. (English)
Keyword: recurrence relation
Keyword: polynomial sequence
Keyword: support
Keyword: real zeros
MSC: 12D10
MSC: 26C10
MSC: 30C15
idZBL: 07250690
idMR: MR4151706
DOI: 10.21136/CMJ.2020.0535-18
.
Date available: 2020-09-07T09:39:33Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148329
.
Reference: [1] Beraha, S., Kahane, J., Weiss, N. J.: Limits of zeros of recursively defined families of polynomials.Studies in Foundations and Combinatorics Adv. Math., Suppl. Stud. 1, Academic Press, New York (1978), 213-232. Zbl 0477.05034, MR 0520560
Reference: [2] Biggs, N.: Equimodular curves.Discrete Math. 259 (2002), 37-57. Zbl 1008.05060, MR 1948772, 10.1016/S0012-365X(02)00444-2
Reference: [3] Brändén, P.: Unimodality, log-concavity, real-rootedness and beyond.Handbook of Enumerative Combinatorics Discrete Mathematics and Its Applications, CRC Press, Boca Raton (2015), 437-483. Zbl 1327.05051, MR 3409348, 10.1201/b18255-10
Reference: [4] Carleson, L., Gamelin, T. W.: Complex Dynamics.Universitext: Tracts in Mathematics, Springer, New York (1993). Zbl 0782.30022, MR 1230383, 10.1007/978-1-4612-4364-9
Reference: [5] Dilcher, K., Stolarsky, K. B.: Zeros of the Wronskian of a polynomial.J. Math. Anal. Appl. 162 (1991), 430-451. Zbl 0748.30007, MR 1137630, 10.1016/0022-247X(91)90160-2
Reference: [6] Kostov, V. P.: Topics on Hyperbolic Polynomials in One Variable.Panoramas et Synthèses 33, Société Mathématique de France, Paris (2011). Zbl 1259.12001, MR 2952044
Reference: [7] Kostov, V. P., Shapiro, B., Tyaglov, M.: Maximal univalent disks of real rational functions and Hermite-Biehler polynomials.Proc. Am. Math. Soc. 139 (2011), 1625-1635. Zbl 1223.26033, MR 2763752, 10.1090/S0002-9939-2010-10778-5
Reference: [8] Rahman, Q. I., Schmeisser, G.: Analytic Theory of Polynomials.London Mathematical Society Monographs 26, Oxford University Press, Oxford (2002). Zbl 1072.30006, MR 1954841
Reference: [9] Tran, K.: Connections between discriminants and the root distribution of polynomials with rational generating function.J. Math. Anal. Appl. 410 (2014), 330-340. Zbl 1307.12002, MR 3109843, 10.1016/j.jmaa.2013.08.025
Reference: [10] Tran, K.: The root distribution of polynomials with a three-term recurrence.J. Math. Anal. Appl. 421 (2015), 878-892. Zbl 1296.30010, MR 3250512, 10.1016/j.jmaa.2014.07.066
.

Files

Files Size Format View
CzechMathJ_70-2020-3_12.pdf 406.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo