Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
Summary:
For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
References:
[1] Asaad, M.: On weakly pronormal subgroups of finite groups. J. Group Theory 17 (2014), 407-418. DOI 10.1515/jgt-2013-0045 | MR 3200366 | Zbl 1296.20016
[2] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups. Commun. Algebra 24 (1996), 2771-2776. DOI 10.1080/00927879608542654 | MR 1393283 | Zbl 0856.20015
[3] Asaad, M., Ramadan, M.: On the intersection of maximal subgroups of a finite group. Arch. Math. 61 (1993), 206-214. DOI 10.1007/BF01198715 | MR 1231153 | Zbl 0787.20013
[4] Ballester-Bolinches, A.: $\mathfrak H$-normalizers and local definitions of saturated formations of finite groups. Isr. J. Math. 67 (1989), 312-326. DOI 10.1007/BF02764949 | MR 1029905 | Zbl 0689.20036
[5] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: On generalised pronormal subgroups of finite groups. Glasg. Math. J. 56 (2014), 691-703. DOI 10.1017/S0017089514000159 | MR 3250272 | Zbl 1322.20011
[6] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: Finite groups in which pronormality and $\mathfrak F$-pronormality coincide. J. Group Theory 19 (2016), 323-329. DOI 10.1515/jgth-2015-0035 | MR 3466598 | Zbl 1344.20027
[7] Ballester-Bolinches, A., Guo, X.: Some results on $p$-nilpotence and solubility of finite groups. J. Algebra 228 (2000), 491-496. DOI 10.1006/jabr.1999.8274 | MR 1764575 | Zbl 0961.20016
[8] Ballester-Bolinches, A., Guo, X., Li, Y., Su, N.: On finite $p$-nilpotent groups. Monatsh. Math. 181 (2016), 63-70. DOI 10.1007/s00605-015-0803-y | MR 3535904 | Zbl 1369.20017
[9] Brewster, B., Martínez-Pastor, A., Pérez-Ramos, M. D.: Pronormal subgroups of a direct product of groups. J. Algebra 321 (2009), 1734-1745. DOI 10.1016/j.jalgebra.2008.12.006 | MR 2498266 | Zbl 1200.20015
[10] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). DOI 10.1515/9783110870138 | MR 1169099 | Zbl 0753.20001
[11] Dornhoff, L.: $M$-groups and $2$-groups. Math. Z. 100 (1967), 226-256. DOI 10.1007/BF01109806 | MR 0217174 | Zbl 0157.35503
[12] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper {&} Row Publishers, New York (1968). MR 0231903 | Zbl 0185.05701
[13] Guo, X. Y., Shum, K. P.: The influence of minimal subgroups of focal subgroups on the structure of finite groups. J. Pure Appl. Algebra 169 (2002), 43-50. DOI 10.1016/S0022-4049(01)00062-7 | MR 1890184 | Zbl 0997.20023
[14] Guo, X., Shum, K. P.: On $p$-nilpotency and minimal subgroups of finte groups. Sci. China, Ser. A 46 (2003), 176-186. DOI 10.1360/03ys9019 | MR 1978505 | Zbl 1217.20010
[15] Guo, X., Shum, K. P.: Permutability of minimal subgroups and $p$-nilpotentcy of finite groups. Isr. J. Math. 136 (2003), 145-155. DOI 10.1007/BF02807195 | MR 1998107 | Zbl 1048.20005
[16] Guo, X., Shum, K. P.: $p$-nilpotence of finite groups and minimal subgroups. J. Algebra 270 (2003), 459-470. DOI 10.1016/j.jalgebra.2003.05.004 | MR 2019627 | Zbl 1072.20020
[17] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung. Nagoya Math. J. 9 (1955), 123-127 German. DOI 10.1017/S0027763000023369 | MR 0074410 | Zbl 0066.01401
[18] Li, Y., Su, N., Wang, Y.: A generalization of Burnside's $p$-nilpotency criterion. J. Group Theory 20 (2017), 185-192. DOI 10.1515/jgth-2016-0028 | MR 3592611 | Zbl 1368.20014
[19] Malinowska, I. A.: Finite groups all of whose small subgroups are pronormal. Acta Math. Hung. 147 (2015), 324-337. DOI 10.1007/s10474-015-0531-8 | MR 3420580 | Zbl 1363.20011
[20] Navarro, G.: Pronormal subgroups and zeros of characters. Proc. Am. Math. Soc. 142 (2014), 3003-3005. DOI 10.1090/S0002-9939-2014-12050-8 | MR 3223355 | Zbl 1309.20006
[21] Peng, T. A.: Finite groups with pro-normal subgroups. Proc. Am. Math. Soc. 20 (1969), 232-234. DOI 10.1090/S0002-9939-1969-0232850-1 | MR 0232850 | Zbl 0167.02302
[22] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). DOI 10.1007/978-1-4419-8594-1 | MR 0648604 | Zbl 0483.20001
[23] Shi, J., Shi, W., Zhang, C.: A note on $p$-nilpotence and solvability of finite groups. J. Algebra 321 (2009), 1555-1560. DOI 10.1016/j.jalgebra.2008.12.004 | MR 2494409 | Zbl 1169.20012
Partner of
EuDML logo