Previous |  Up |  Next

Article

Title: New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms (English)
Author: Liu, Jiancheng
Author: Mi, Rong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 881-890
Summary lang: English
.
Category: math
.
Summary: We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator. (English)
Keyword: Jacobi operator
Keyword: first eigenvalue
Keyword: closed hypersurface
MSC: 53C50
idZBL: 07250695
idMR: MR4151711
DOI: 10.21136/CMJ.2020.0579-18
.
Date available: 2020-09-07T09:41:49Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148334
.
Reference: [1] Alencar, H., Carmo, M. do: Hypersurfaces with constant mean curvature in spheres.Proc. Am. Math. Soc. 120 (1994), 1223-1229. Zbl 0802.53017, MR 1172943, 10.1090/S0002-9939-1994-1172943-2
Reference: [2] Alías, L. J.: On the stability index of minimal and constant mean curvature hypersurfaces in spheres.Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. Zbl 1139.53029, MR 2301375
Reference: [3] L. J. Alías, A. Barros, A. Brasil, Jr.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue.Proc. Am. Math. Soc. 133 (2005), 875-884. Zbl 1065.53046, MR 2113939, 10.1090/S0002-9939-04-07559-8
Reference: [4] Alías, L. J., García-Martínez, S. C.: An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms.Geom. Dedicata 156 (2012), 31-47. Zbl 1232.53046, MR 2863544, 10.1007/s10711-011-9588-x
Reference: [5] Alías, L. J., Meléndez, J., Palmas, O.: Hypersurfaces with constant scalar curvature in space forms.Differ. Geom. Appl. 58 (2018), 65-82. Zbl 1387.53069, MR 3777748, 10.1016/j.difgeo.2018.01.001
Reference: [6] Aquino, C. P., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: On the first stability eigenvalue of hypersurfaces in Euclidean and hyperbolic spaces.Quaest. Math. 40 (2017), 605-616. Zbl 1426.53077, MR 3691472, 10.2989/16073606.2017.1305463
Reference: [7] Barbosa, J. L., Carmo, M. do, Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds.Math. Z. 197 (1988), 123-138. Zbl 0653.53045, MR 0917854, 10.1007/bf01161634
Reference: [8] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115. Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(08)60806-5
Reference: [9] Chen, D., Cheng, Q.-M.: Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. Zbl 1368.53042, MR 3626321, 10.1007/s00526-017-1132-x
Reference: [10] Cheng, Q.-M.: The rigidity of Clifford torus $S^{1}\bigl({\scriptstyle \sqrt{\frac{1}{n}}}\bigr)\times S^{n-1} \bigl({\scriptstyle \sqrt{\frac{n-1}{n}}}\big)$.Comment. Math. Helv. 71 (1996), 60-69. Zbl 0874.53046, MR 1371678, 10.1007/BF02566409
Reference: [11] Cheng, Q.-M.: Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature.J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. Zbl 1023.53044, MR 1865560, 10.1112/S0024610701002587
Reference: [12] Cheng, Q.-M., Nakagawa, H.: Totally umbilic hypersurfaces.Hiroshima Math. J. 20 (1990), 1-10. Zbl 0711.53045, MR 1050421, 10.32917/hmj/1206454435
Reference: [13] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications.Math. Z. 143 (1975), 289-297. Zbl 0329.53035, MR 0378001, 10.1007/BF01214381
Reference: [14] Chern, S. S., Carmo, M. do, Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length.Functional Analysis and Related Fields Springer, New York (1970), 59-75. Zbl 0216.44001, MR 0273546, 10.1007/978-3-642-48272-4_2
Reference: [15] A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr.: A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$.Kodai Math. J. 27 (2004), 45-56. Zbl 1059.53047, MR 2042790, 10.2996/kmj/1085143788
Reference: [16] Lima, E. L. de, Lima, H. F. de: A new optimal estimate for the first stability eigenvalue of closed hypersurfaces in Riemannian space forms.Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. Zbl 1409.53054, MR 3912008, 10.1007/s12215-018-0332-3
Reference: [17] Soufi, A. El, II., E. M. Harrell, Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds.Trans. Am. Math. Soc. 361 (2009), 2337-2350. Zbl 1162.58009, MR 2471921, 10.1090/S0002-9947-08-04780-6
Reference: [18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces.Ann. Math. 89 (1969), 187-197. Zbl 0174.24901, MR 0238229, 10.2307/1970816
Reference: [19] Meléndez, J.: Rigidity theorems for hypersurfaces with constant mean curvature.Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. Zbl 1319.53065, MR 3264798, 10.1007/s00574-014-0055-9
Reference: [20] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Am. J. Math. 96 (1974), 207-213. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [21] Perdomo, O.: First stability eigenvalue characterization of Clifford hypersurfaces.Proc. Am. Math. Soc. 130 (2002), 3379-3384. Zbl 1014.53036, MR 1913017, 10.1090/S0002-9939-02-06451-1
Reference: [22] Simons, J.: Minimal varieties in Riemannian manifolds.Ann. Math. (2) 88 (1968), 62-105. Zbl 0181.49702, MR 0233295, 10.2307/1970556
Reference: [23] Wu, C.: New characterizations of the Clifford tori and the Veronese surface.Arch. Math. 61 (1993), 277-284. Zbl 0791.53056, MR 1231163, 10.1007/bf01198725
.

Files

Files Size Format View
CzechMathJ_70-2020-3_17.pdf 283.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo