Title:
|
The Collatz-Wielandt quotient for pairs of nonnegative operators (English) |
Author:
|
Friedland, Shmuel |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
65 |
Issue:
|
5 |
Year:
|
2020 |
Pages:
|
557-597 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators $A,B$ that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and $B$ is the identity operator, then one version of this quotient is the spectral radius of $A$. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient. (English) |
Keyword:
|
Perron-Frobenius theory |
Keyword:
|
Collatz-Wielandt quotient |
Keyword:
|
completely positive operator |
Keyword:
|
commodity pricing |
Keyword:
|
wireless network |
Keyword:
|
quantum information theory |
MSC:
|
15A22 |
MSC:
|
15A45 |
MSC:
|
15B48 |
MSC:
|
15B57 |
MSC:
|
94A40 |
idZBL:
|
07285946 |
idMR:
|
MR4160782 |
DOI:
|
10.21136/AM.2020.0260-19 |
. |
Date available:
|
2020-09-23T13:48:02Z |
Last updated:
|
2022-11-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148366 |
. |
Reference:
|
[1] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Generalized Perron-Frobenius theorem for multiple choice matrices, and applications.Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 SIAM, Philadelphia (2013), 478-497. Zbl 1422.90013, MR 3186769, 10.1137/1.9781611973105.35 |
Reference:
|
[2] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Generalized Perron-Frobenius theorem for nonsquare matrices.Available at https://arxiv.org/abs/1308.5915 (2013), 55 pages. MR 3186769 |
Reference:
|
[3] Berman, A., Plemmons, R. J.: Nonnegative Matrices in Mathematical Sciences.Computer Science and Applied Mathematics. Academic Press, New York (1979). Zbl 0484.15016, MR 0544666, 10.1137/1.9781611971262 |
Reference:
|
[4] Boutry, G., Elad, M., Golub, G. H., Milanfar, P.: The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach.SIAM J. Matrix Anal. Appl. 27 (2005), 582-601. Zbl 1100.65035, MR 2179690, 10.1137/S0895479803428795 |
Reference:
|
[5] Boyd, S., Vandenberghe, L.: Convex Optimization.Cambridge University Press, New York (2004). Zbl 1058.90049, MR 2061575, 10.1017/CBO9780511804441 |
Reference:
|
[6] Choi, M.-D.: Completely positive linear maps on complex matrices.Linear Algebra Appl. 10 (1975), 285-290. Zbl 0327.15018, MR 0376726, 10.1016/0024-3795(75)90075-0 |
Reference:
|
[7] Chu, D., Golub, G. H.: On a generalized eigenvalue problem for nonsquare pencils.SIAM J. Matrix Anal. Appl. 28 (2006), 770-787. Zbl 1128.15004, MR 2262980, 10.1137/050628258 |
Reference:
|
[8] Collatz, L.: Einschliessungssatz für die charakteristischen Zahlen von Matrizen.Math. Z. 48 (1942), 221-226 German. Zbl 0027.00604, MR 0008590, 10.1007/BF01180013 |
Reference:
|
[9] Erdelyi, I.: On the matrix equation $Ax=\lambda Bx$.J. Math. Anal. Appl. 17 (1967), 119-132. Zbl 0153.04902, MR 0202734, 10.1016/0022-247X(67)90169-2 |
Reference:
|
[10] Friedland, S.: Characterizations of the spectral radius of positive operators.Linear Algebra Appl. 134 (1990), 93-105. Zbl 0707.15005, MR 1060012, 10.1016/0024-3795(90)90008-Z |
Reference:
|
[11] Friedland, S.: Characterizations of spectral radius of positive operators on $C^*$ algebras.J. Funct. Anal. 97 (1991), 64-70. Zbl 0745.47024, MR 1105655, 10.1016/0022-1236(91)90016-X |
Reference:
|
[12] Friedland, S.: Matrices: Algebra, Analysis and Applications.World Scientific, Hackensack (2016). Zbl 1337.15002, MR 3467205, 10.1142/9567 |
Reference:
|
[13] Friedland, S., Loewy, R.: On the extreme points of quantum channels.Linear Algebra Appl. 498 (2016), 553-573. Zbl 1334.15086, MR 3478578, 10.1016/j.laa.2016.02.001 |
Reference:
|
[14] Frobenius, G. F.: Über Matrizen aus positiven Elementen.Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03. |
Reference:
|
[15] Frobenius, G. F.: Über Matrizen aus positiven Elementen II.Berl. Ber. 1909 (1909), 514-518 German \99999JFM99999 40.0202.02. |
Reference:
|
[16] Frobenius, G. F.: Über Matrizen aus nicht negativen Elementen.Berl. Ber. 1912 (1912), 456-477 German \99999JFM99999 43.0204.09. |
Reference:
|
[17] Gantmacher, F. R.: The Theory of Matrices. Vol. 1.Chelsea Publishing, New York (1959). Zbl 0927.15001, MR 0107649 |
Reference:
|
[18] Gantmacher, F. R.: The Theory of Matrices. Vol. 2.Chelsea Publishing, New York (1959). Zbl 0927.15002, MR 0107649 |
Reference:
|
[19] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913 |
Reference:
|
[20] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.Algorithms and Combinatorics 2. Springer, Berlin (1988). Zbl 0634.05001, MR 0936633, 10.1007/978-3-642-97881-4 |
Reference:
|
[21] Hastings, M. B.: Superadditivity of communication capacity using entangled inputs.Nature Phys. 5 (2009), 255-257. 10.1038/nphys1224 |
Reference:
|
[22] Holevo, A. S.: The additivity problem in quantum information theory.Proceedings of the International Congress of Mathematicians (ICM). Vol. III European Mathematical Society, Zürich (2006), 999-1018. Zbl 1100.94007, MR 2275716, 10.4171/022-3/49 |
Reference:
|
[23] Holevo, A. S.: Quantum Systems, Channels, Information: A Mathematical Introduction.De Gruyter Studies in Mathematical Physics 16. De Gruyter, Berlin (2012). Zbl 1332.81003, MR 2986302, 10.1515/9783110273403 |
Reference:
|
[24] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290, 10.1017/9781139020411 |
Reference:
|
[25] Karlin, S.: Positive operators.J. Math. Mech. 8 (1959), 905-937. Zbl 0087.11002, MR 0114138, 10.1512/iumj.1959.8.58058 |
Reference:
|
[26] Kreĭn, M. G., Rutman, M. A.: Linear operators leaving invariant cone in a Banach space.Usp. Mat. Nauk 3 (1948), 3-95 Russian. Zbl 0030.12902, MR 0027128 |
Reference:
|
[27] Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity.CBMS-NSF Regional Conference Series in Applied Mathematics 50. SIAM, Philadelphia (1986). Zbl 0606.68039, MR 0861822, 10.1137/1.9781611970203 |
Reference:
|
[28] Mangasarian, O. L.: Perron-Frobenius properties of $Ax-\lambda Bx$.J. Math. Anal. Appl. 36 (1971), 86-102. Zbl 0224.15010, MR 0285555, 10.1016/0022-247X(71)90020-5 |
Reference:
|
[29] Mendl, C. B., Wolf, M. M.: Unital quantum channels - convex structure and revivals of Birkhoff’s theorem.Commun. Math. Phys. 289 (2009), 1057-1086. Zbl 1167.81011, MR 2511660, 10.1007/s00220-009-0824-2 |
Reference:
|
[30] Meyer, C. D.: Matrix Analysis and Applied Linear Algebra.SIAM, Philadelphia (2000). Zbl 0962.15001, MR 1777382, 10.1137/1.9780898719512 |
Reference:
|
[31] Minc, H.: Nonnegative Matrices.Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988). Zbl 0638.15008, MR 0932967 |
Reference:
|
[32] Perron, O.: Zur Theorie der Matrices.Math. Ann. 64 (1907), 248-263 German \99999JFM99999 38.0202.01. MR 1511438, 10.1007/BF01449896 |
Reference:
|
[33] Petz, D.: Quantum Information Theory and Quantum Statistics.Theoretical and Mathematical Physics. Springer, Berlin (2008). Zbl 1145.81002, MR 2363070, 10.1007/978-3-540-74636-2 |
Reference:
|
[34] Pillai, S. U., Suel, T., Cha, S.: The Perron-Frobenius theorem: Some of its applications.IEEE Signal Process. Magazine 22 (2005), 62-75. 10.1109/MSP.2005.1406483 |
Reference:
|
[35] Schaeffer, H. H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften 215. Springer, Berlin (1974). Zbl 0296.47023, MR 0423039, 10.1007/978-3-642-65970-6 |
Reference:
|
[36] Seneta, E.: Non-Negative Matrices and Markov Chains.Springer Series in Statistics. Springer, New York (1981). Zbl 0471.60001, MR 0719544, 10.1007/0-387-32792-4 |
Reference:
|
[37] Shirokov, M. E.: On the structure of optimal sets for a quantum channel.Probl. Inf. Transm. 42 (2006), 282-297 Translation from Probl. Peredachi Inf. 42 2006 23-40. Zbl 1237.94039, MR 2278809, 10.1134/S0032946006040028 |
Reference:
|
[38] Shor, P. W.: Additivity of the classical capacity of entanglement-breaking quantum channels.J. Math. Phys. 43 (2002), 4334-4340. Zbl 1060.94004, MR 1924442, 10.1063/1.1498000 |
Reference:
|
[39] Srikant, R.: The Mathematics of Internet Congestion Control.Systems and Control: Foundations and Applications. Birkhäuser, Boston (2004). Zbl 1086.68018, MR 2018967, 10.1007/978-0-8176-8216-3 |
Reference:
|
[40] Wielandt, H.: Unzerlegbare, nicht-negative Matrizen.Math. Z. 52 (1950), 642-648 German. Zbl 0035.29101, MR 0035265, 10.1007/BF02230720 |
. |