Previous |  Up |  Next

Article

Title: Partial sum of eigenvalues of random graphs (English)
Author: Rocha, Israel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 5
Year: 2020
Pages: 609-618
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a graph on $n$ vertices and let $\lambda _{1}\geq \lambda _{2}\geq \ldots \geq \lambda _{n}$ be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues $s_{k}=\sum _{i=1}^{k}\lambda _{i}$, for $1\leq k\leq n$, and show that a typical graph has $s_{k}\leq (e(G)+k^{2})/(0.99n)^{1/2}$, where $e(G)$ is the number of edges of $G$. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix. (English)
Keyword: sum of eigenvalues
Keyword: graph energy
Keyword: random matrix
MSC: 05C50
MSC: 15A18
idZBL: 07285948
idMR: MR4160784
DOI: 10.21136/AM.2020.0352-19
.
Date available: 2020-09-23T13:48:49Z
Last updated: 2022-11-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148368
.
Reference: [1] Das, K. C., Mojallal, S. A., Sun, S.: On the sum of the $k$ largest eigenvalues of graphs and maximal energy of bipartite graphs.Linear Algebra Appl. 569 (2019), 175-194. Zbl 1411.05156, MR 3904318, 10.1016/j.laa.2019.01.016
Reference: [2] Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices.Combinatorica 1 (1981), 233-241. Zbl 0494.15010, MR 0637828, 10.1007/BF02579329
Reference: [3] Graovac, A., Gotman, I., Trinajstić, N.: Topological Approach to the Chemistry of Conjugated Molecules.Lecture Notes in Chemistry 4. Springer, Berlin (1977). Zbl 0385.05032, 10.1007/978-3-642-93069-0
Reference: [4] Hoeffding, W.: Probability inequalities for sums of bounded random variables.J. Am. Stat. Assoc. 58 (1963), 13-30. Zbl 0127.10602, MR 0144363, 10.2307/2282952
Reference: [5] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, New York (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2
Reference: [6] Mohar, B.: On the sum of $k$ largest eigenvalues of graphs and symmetric matrices.J. Comb. Theory, Ser. B 99 (2009), 306-313. Zbl 1217.05151, MR 2482950, 10.1016/j.jctb.2008.07.001
Reference: [7] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072
Reference: [8] Nikiforov, V.: On the sum of $k$ largest singular values of graphs and matrices.Linear Algebra Appl. 435 (2011), 2394-2401. Zbl 1222.05172, MR 2811124, 10.1016/j.laa.2010.08.014
Reference: [9] Nikiforov, V.: Beyond graph energy: norms of graphs and matrices.Linear Algebra Appl. 506 (2016), 82-138. Zbl 1344.05089, MR 3530671, 10.1016/j.laa.2016.05.011
Reference: [10] Rocha, I.: Brouwer's conjecture holds asymptotically almost surely.Linear Algebra Appl. 597 (2020), 198-205. Zbl 07190773, MR 4082064, 10.1016/j.laa.2020.03.019
Reference: [11] Wigner, E. P.: On the distribution of the roots of certain symmetric matrices.Ann. Math. (2) 67 (1958), 325-327. Zbl 0085.13203, MR 0095527, 10.2307/1970008
.

Files

Files Size Format View
AplMat_65-2020-5_5.pdf 278.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo