Previous |  Up |  Next

Article

Title: Universal rates for estimating the residual waiting time in an intermittent way (English)
Author: Morvai, Gusztáv
Author: Weiss, Benjamin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 601-616
Summary lang: English
.
Category: math
.
Summary: A simple renewal process is a stochastic process $\{X_n\}$ taking values in $\{0,1\}$ where the lengths of the runs of $1$'s between successive zeros are independent and identically distributed. After observing ${X_0, X_1, \ldots X_n}$ one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal. (English)
Keyword: statistical learning
Keyword: statistical inference
Keyword: prediction methods
Keyword: renewal theory
MSC: 60G25
MSC: 60K05
idZBL: Zbl 07286038
idMR: MR4168527
DOI: 10.14736/kyb-2020-4-0601
.
Date available: 2020-10-30T16:19:39Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148374
.
Reference: [1] Algoet, P.: The strong low of large numbers for sequential decisions under uncertainity..IEEE Trans. Inform. Theory 40 (1994), 609-634. MR 1295308, 10.1109/18.335876
Reference: [2] Bahr, B. von, Esseen, C. G.: Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r \leq 2$..Ann. Math. Statist. 36 (1965), 299-303. MR 0170407, 10.1214/aoms/1177700291
Reference: [3] Denby, L., Vardi, Y.: A short-cut method for estimation in renewal processes..Technometrics 27 (1985), 4, 361-373. MR 0811011, 10.1080/00401706.1985.10488075
Reference: [4] Feller, W.: An Introduction to Probability Theory and its Applications Vol. I. Third edition..John Wiley and Sons, Inc., New York - London - Sydney 1968. MR 0228020
Reference: [5] Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Third edition..Pearson Prentice Hall, Upper Saddle River NJ, 2005.
Reference: [6] Györfi, L., Ottucsák, G.: Sequential prediction of unbounded stationary time series..IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR 2317147, 10.1109/tit.2007.894660
Reference: [7] Khudanpur, S., Narayan, P.: Order estimation for a special class of hidden Markov sources and binary renewal processses..IEEE Trans. Inform. Theory 48 (2002), 1704-1713. MR 1909484, 10.1109/tit.2002.1003850
Reference: [8] Marcinkiewicz, J., Zygmund, A.: Sur les foncions independantes..Fund. Math. 28 (1937), 60-90. MR 0115885
Reference: [9] Morvai, G.: Guessing the output of a stationary binary time series..In: Foundations of Statistical Inference (Y. Haitovsky, H. R. Lerche and Y. Ritov, eds.), Physika-Verlag 2003, pp. 207-215. MR 2017826
Reference: [10] Morvai, G., Weiss, B.: Forecasting for stationary binary time series..Acta Applic. Math. 79 (2003), 25-34. MR 2021874, 10.1023/a:1025862222287
Reference: [11] Morvai, G., Weiss, B.: Prediction for discrete time series..Probab. Theory Related Fields 132 (2005), 1-12. MR 2136864, 10.1007/s00440-004-0386-3
Reference: [12] Morvai, G., Weiss, B.: On sequential estimation and prediction for discrete time series..Stoch. Dynam. 7 (2007), 4, 417-437. Zbl 1255.62228, MR 2378577, 10.1142/s021949370700213x
Reference: [13] Morvai, G., Weiss, B.: On universal estimates for binary renewal processes..Ann. Appl. Prob. 18 (2008), 5, 1970-1992. Zbl 1158.62053, MR 2462556, 10.1214/07-aap512
Reference: [14] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series..In: ITW 2009, IEEE Information Theory Workshop on Networking and Information Theory, 2009 pp. 67-70. MR 3301776, 10.1109/itwnit.2009.5158543
Reference: [15] Morvai, G., Weiss, B.: Inferring the residual waiting time for binary stationary time series..Kybernetika 50 (2014), 6, 869-882. Zbl 1308.62067, MR 3301776, 10.14736/kyb-2014-6-0869
Reference: [16] Morvai, G., Weiss, B.: A versatile scheme for predicting renewal times..Kybernetika 52 (2016), 3, 348-358. MR 3532511, 10.14736/kyb-2016-3-0348
Reference: [17] Nobel, A. B.: On optimal sequential prediction for general processes..IEEE Trans. Inform. Theory 49 (2003), 83-98. MR 1965889, 10.1109/tit.2002.806141
Reference: [18] Peña, E. A., Strawderman, R., Hollander, M.: Nonparametric estimation with recurrent event data..J. Amer. Statist. Assoc. 96 (2001), 456, 1299-1315. MR 1946578, 10.1198/016214501753381922
Reference: [19] Petrov, V. V.: Limit Theorems of Probability Theory..Clarendon Press, Oxford 1995. MR 1353441, 10.1017/s001309150002335x
Reference: [20] Ryabko, B. Y.: Prediction of random sequences and universal coding..Probl. Inform. Trans. 24 (1988), 87-96. Zbl 0666.94009, MR 0955983
Reference: [21] Shields, P. C.: The Ergodic Theory of Discrete Sample Paths..Graduate Studies in Mathematics 13, American Mathematical Society, Providence 1996. Zbl 0879.28031, MR 1400225, 10.1090/gsm/013
Reference: [22] Shiryayev, A. N.: Probability. Second edition..Springer-Verlag, New York 1996. MR 1368405
Reference: [23] Takahashi, H.: Computational limits to nonparametric estimation for ergodic processes..IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999. MR 2882275, 10.1109/tit.2011.2165791
Reference: [24] Vardi, Y.: Nonparametric estimation in renewal processes..Ann. Statist. (1982), 772-785. MR 0663431, 10.1214/aos/1176345870
.

Files

Files Size Format View
Kybernetika_56-2020-4_1.pdf 504.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo