Previous |  Up |  Next

Article

Keywords:
negatively orthant dependent random variables; the tail probability; strong convergence
Summary:
In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.
References:
[1] Amini, M., Bozorgnia, A.: Complete convergence for negatively dependent random variables. J. Appl. Math. Stoch. Anal. 16 (2003), 121-126. DOI 10.1155/s104895330300008x | MR 1989578
[2] Asadian, N., Fakoor, V., Bozorgnia, A.: Rosental's type inequalities for negatively orthant dependent random variables. J. Iranian Stat. Soc. 5 (2006), 1-2, 66-75.
[3] Bozorgnia, A., Patterson, R. F., Taylor, R. L.: Limit theorems for dependent random variables. World Congress Nonlinear Analysts'92 (1996), pp. 1639-1650. DOI 10.1515/9783110883237.1639 | MR 1389197
[4] Cai, G. H.: Strong laws for weighted sums of NA random variables. Metrika 68 (2008), 323-331. DOI 10.1007/s00184-007-0160-5 | MR 2448963 | Zbl 1247.60036
[5] Chow, Y. S.: On the rate of moment complete convergence of sample sums and extremes. Bull. Inst. Math. Acad. Sinica 16 (1988), 177-201. MR 1089491
[6] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence. Commun. Stat., Theory Methods 10 (1981), 307-337. DOI 10.1080/03610928108828041 | MR 0612400
[7] Gan, S. X., Chen, P. Y.: Some limit theorems for weighted sums of arrays of NOD random variables. Acta. Math. Sci.32B (2012), 6, 2388-2400. DOI 10.1016/s0252-9602(12)60187-8 | MR 2989424
[8] Huang, H. W., Wang, D. C.: A note on the strong limit theorem for weighted sums of sequences of negatively dependent random variables. J. Inequal. Appl. (2012). DOI 10.1186/1029-242x-2012-233 | MR 2678912 | Zbl 1280.60022
[9] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11 (1983), 1, 286-295. DOI 10.1214/aos/1176346079 | MR 0684886
[10] Kuczmaszewska, A.: On some conditions for complete convergence for arrays of rowwise negatively dependent random variables. Stoch. Anal. Appl. 24 (2006), 1083-1095. DOI 10.1080/07362990600958754 | MR 2273771
[11] Qiu, D. H., Liu, X. D., Chen, P. Y.: Complete moment convergence for maximal partial sums under NOD setup. J. Inequal. Appl. 2015. DOI 10.1186/s13660-015-0577-8 | MR 3313861
[12] Qiu, D. H., Wu, Q. Y., Chen, P. Y.: Complete convergence for negatively orthant dependent random variables. J. Inequal. Appl. (2014). DOI 10.1186/1029-242x-2014-145 | MR 3255876
[13] Shen, A. T.: On the strong convergence rate for weighted sums of arrays of rowwise negatively orthant dependent random variables. RACSAM 107 (2013), 2, 257-271. DOI 10.1007/s13398-012-0067-5 | MR 3199709 | Zbl 1278.60060
[14] Shen, A. T., Wu, R. C.: Strong convergence results for weighted sums of $\tilde{\rho }$-mixing random variables. J. Inequal. Appl. (2013). DOI 10.1186/1029-242x-2013-327 | MR 3081708 | Zbl 1287.60040
[15] Sung, S. H.: On the exponential inequalities for negatively dependent random variables. J. Math. Anal. Appl. 381 (2011), 538-545. DOI 10.1016/j.jmaa.2011.02.058 | MR 2802091
[16] Volodin, A.: On the Kolmogorov exponential inequality for negatively dependent random variables. Pakistan J. Stat. 18 (2002), 249-254. MR 1944611
[17] Wang, X. J., Hu, S. H., Shen, A. T., Yang, W. Z.: An exponential inequality for a NOD sequence and a strong law of large numbers. Appl. Math. Lett. 24 (2011), 219-223. DOI 10.1016/j.aml.2010.09.007 | MR 2735145
[18] Wang, X. J., Hu, S. H., Volodin, A.: Strong limit theorems for weighted sums of NOD sequence and exponential inequalities. Bull. Korean Math. Soc.48 (2011), 5, 923-938. DOI 10.4134/bkms.2011.48.5.923 | MR 2867181
[19] Wang, X. J., Hu, S. H., Yang, W. Z.: Complete convergence for arrays of rowwise negatively orthant dependent random variables. RACSAM 106 (2012), 2, 235-245. DOI 10.1007/s13398-011-0048-0 | MR 2978912 | Zbl 1260.60062
[20] Wu, Q. Y.: Complete convergence for negatively dependent sequences of random variables. J. Inequal. Appl. (2010), Article ID 507293. DOI 10.1155/2010/507293 | MR 2611036 | Zbl 1202.60050
[21] Wu, Q. Y.: Complete convergence for weighted sums of sequences of negatively dependent random variables. J. Probab. Stat. (2011), Article ID 202015. DOI 10.1155/2011/202015 | MR 2774947
[22] Wu, Q. Y.: Probability Limit Theory for Mixing and Dependent Sequences. Science Press of China, Beijing 2006.
[23] Wu, Y. F., Sung, S. H., Volodin, A.: A note on the rates of convergence for weighted sums of ${\rho^*}$-mixing random variables. Lith. Math. J. 54 (2014), 2, 220-228. DOI 10.1007/s10986-014-9239-7 | MR 3212638
[24] Wu, Y. F., Zhu, D. J.: Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables. J. Korean Stat. Soc. 39 (2010), 189-197. DOI 10.1016/j.jkss.2009.05.003 | MR 2642485
[25] Zarei, H., Jabbari, H.: Complete convergence of weighted sums under negative dependence. Stat. Pap. 52 (2009), 413-418. DOI 10.1007/s00362-009-0238-4 | MR 2795888
[26] Zhang, Q. X., Wang, D. C.: A note on the rate of strong convergence for weighted sums of arrays of rowwise negatively orthant dependent random variables. Discrete Dyn. Nat. Soc. (2014), Article ID 368702. DOI 10.1155/2014/368702 | MR 3253602
Partner of
EuDML logo