Previous |  Up |  Next

Article

Title: Isocanted alcoved polytopes (English)
Author: de la Puente, María Jesús
Author: Clavería, Pedro Luis
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 6
Year: 2020
Pages: 703-726
Summary lang: English
.
Category: math
.
Summary: Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their $f$-vectors and checking the validity of the following five conjectures: Bárány, unimodality, $3^d$, flag and cubical lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension $d$, an isocanted alcoved polytope has $2^{d+1}-2$ vertices, its face lattice is the lattice of proper subsets of $[d+1]$ and its diameter is $d+1$. They are realizations of $d$-elementary cubical polytopes. The $f$-vector of a $d$-dimensional isocanted alcoved polytope attains its maximum at the integer $\lfloor d/3\rfloor $. (English)
Keyword: cubical polytope
Keyword: isocanted
Keyword: alcoved
Keyword: centrally symmetric
Keyword: almost simple
Keyword: zonotope
Keyword: $f$-vector
Keyword: cubical $g$-vector
Keyword: unimodal
Keyword: flag
Keyword: face lattice
Keyword: log-concave sequence
Keyword: tropical normal idempotent matrix
Keyword: symmetric matrix
MSC: 15A80
MSC: 52B12
idZBL: Zbl 07285953
idMR: MR4191365
DOI: 10.21136/AM.2020.0373-19
.
Date available: 2020-11-18T09:36:52Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148392
.
Reference: [1] Adin, R. M.: A new cubical $h$-vector.Discrete Math. 157 (1996), 3-14. Zbl 0861.52007, MR 1417283, 10.1016/S0012-365X(96)83003-2
Reference: [2] Adin, R. M., Kalmanovich, D., Nevo, E.: On the cone of $f$-vectors of cubical polytopes.Proc. Am. Math. Soc. 147 (2019), 1851-1866. Zbl 07046511, MR 3937665, 10.1090/proc/14380
Reference: [3] Barvinok, A.: Integer Points in Polyhedra.Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008). Zbl 1154.52009, MR 2455889, 10.4171/052
Reference: [4] Bisztriczky, T., McMullen, P., Schneider, R., (eds.), A. I. Weiss: Polytopes: Abstract, Convex and Computational.NATO ASI Series. Series C. Mathematical and Physical Sciences 440. Kluwer Academic Publishers, Dordrecht (1994). Zbl 0797.00016, MR 1322054, 10.1007/978-94-011-0924-6
Reference: [5] Blind, G., Blind, R.: The cubical $d$-polytopes with fewer than $2^{d+1}$ vertices.Discrete Comput. Geom. 13 (1995), 321-345. Zbl 0824.52013, MR 1318781, 10.1007/BF02574048
Reference: [6] Blind, G., Blind, R.: The almost simple cubical polytopes.Discrete Math. 184 (1998), 25-48. Zbl 0956.52008, MR 1609343, 10.1016/s0012-365x(97)00159-3
Reference: [7] Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update.Jerusalem combinatorics '93 Contemporary Mathematics 178. American Mathematical Society, Providence (1994), 71-89. Zbl 0813.05007, MR 1310575, 10.1090/conm/178
Reference: [8] Brugallé, E.: Un peu de géométrie tropicale.Quadrature 74 (2009), 10-22 French. Zbl 1202.14055, 10.1051/quadrature/2009015
Reference: [9] Brugallé, E.: Some aspects of tropical geometry.Eur. Math. Soc. Newsl. 83 (2012), 23-28. Zbl 1285.14069, MR 2934649
Reference: [10] Butkovič, P.: Max-Plus Linear Systems: Theory and Algorithms.Springer Monographs in Mathematics. Springer, London (2010). Zbl 1202.15032, MR 2681232, 10.1007/978-1-84996-299-5
Reference: [11] Puente, M. J. de la: On tropical Kleene star matrices and alcoved polytopes.Kybernetika 49 (2013), 897-910. Zbl 1297.15029, MR 3182647
Reference: [12] Puente, M. J. de la: Distances on the tropical line determined by two points.Kybernetika 50 (2014), 408-335. Zbl 1321.14050, MR 3245538, 10.14736/kyb-2014-3-0408
Reference: [13] Puente, M. J. de la: Quasi-Euclidean classification of alcoved convex polyhedra.Linear Multilinear Algebra 68 (2020), 2110-2142. MR 4160431, 10.1080/03081087.2019.1572065
Reference: [14] Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix.Combinatorial and computational geometry Mathematical Sciences Research Institute Publications 52. Cambridge University Press, Cambridge (2005), 213-242. Zbl 1095.15001, MR 2178322
Reference: [15] Develin, M., Sturmfels, B.: Tropical convexity.Doc. Math. 9 (2004), 1-27 corrigendum ibid. 9 2004 205-206. Zbl 1054.52004, MR 2054977
Reference: [16] Grünbaum, B.: Convex Polytopes.John Wiley & Sons, London (1967). Zbl 0163.16603, MR 0226496, 10.1007/978-1-4613-0019-9
Reference: [17] Guillon, P., Izhakian, Z., Mairesse, J., Merlet, G.: The ultimate rank of tropical matrices.J. Algebra 437 (2015), 222-248. Zbl 1316.15030, MR 3351964, 10.1016/j.jalgebra.2015.02.026
Reference: [18] Henk, M., Richter-Gebert, J., Ziegler, G. M.: Basic properties of convex polytopes.Handbook of Discrete and Computational Geometry J. E. Goodman et al. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, Boca Raton (1997), 243-270. Zbl 0911.52007, MR 1730169
Reference: [19] Jiménez, A., Puente, M. J. de la: Six combinatorial clases of maximal convex tropical polyhedra.(2012), 40 pages Available at https://arxiv.org/abs/1205.4162.
Reference: [20] Jockusch, W.: The lower and upper bound problems for cubical polytopes.Discrete Comput. Geom. 9 (1993), 159-163. Zbl 0771.52005, MR 1194033, 10.1007/BF02189315
Reference: [21] Kalai, G.: The number of faces of centrally-symmetric polytopes.Graphs Comb. 5 (1989), 389-391. Zbl 1168.52303, MR 1554357, 10.1007/BF01788696
Reference: [22] Kalai, G., (eds.), M. G. Ziegler: Polytopes: Combinatorics and Computation.DMV Seminar 29. Birkhäuser, Basel (2000). Zbl 0944.00089, MR 1785290, 10.1007/978-3-0348-8438-9
Reference: [23] Lam, T., Postnikov, A.: Alcoved polytopes I.Discrete Comput. Geom. 38 (2007), 453-478. Zbl 1134.52019, MR 2352704, 10.1007/s00454-006-1294-3
Reference: [24] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics.Contemporary Mathematics 377. American Mathematical Society, Providence (2005). Zbl 1069.00011, MR 2145152, 10.1090/conm/377
Reference: [25] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics.Contemporary Mathematics 495. American Mathematical Society, Providence (2009). Zbl 1172.00019, MR 2581510, 10.1090/conm/495
Reference: [26] Mikhalkin, G.: What is ... a tropical curve?.Notices Am. Math. Soc. 54 (2007), 511-513. Zbl 1142.14300, MR 2305295
Reference: [27] Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry.Idempotent Mathematics and Mathematical Physics Contemporary Mathematics 377. American Mathematical Society, Providence (2005), 289-317. Zbl 1093.14080, MR 2149011, 10.1090/conm/377
Reference: [28] Sanyal, R., Werner, A., Ziegler, G. M.: On Kalai's conjectures concerning centrally symmetric polytopes.Discrete Comput. Geom. 41 (2009), 183-198. Zbl 1168.52013, MR 2471868, 10.1007/s00454-008-9104-8
Reference: [29] Schmitt, M. W., Ziegler, G. M.: Ten problems in geometry.Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination Springer, New York (2013), 279-289. Zbl 1267.52002, MR 3087288, 10.1007/978-0-387-92714-5_22
Reference: [30] (ed.), M. Senechal: Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination.Springer, New York (2013). Zbl 1267.52002, MR 3087288, 10.1007/978-0-387-92714-5
Reference: [31] Sergeev, S.: Multiorder, Kleene stars and cyclic projectors in the geometry of max cones.Tropical and Idempotent Mathematics Contemporary Mathematics 495. American Mathematical Society, Providence (2009), 317-342. Zbl 1179.15033, MR 2581526, 10.1090/conm/495
Reference: [32] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences.Available at http://oeis.org/ (2020). MR 3822822
Reference: [33] Speyer, D.: Tropical linear spaces.SIAM J. Discrete Math. 22 (2008), 1527-1558. Zbl 1191.14076, MR 2448909, 10.1137/080716219
Reference: [34] Speyer, D., Sturmfels, B.: The tropical Grassmannian.Adv. Geom. 4 (2004), 389-411. Zbl 1065.14071, MR 2071813, 10.1515/advg.2004.023
Reference: [35] Stanley, R. P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry.Graph Theory and Its Applications: East and West Annals of the New York Academy of Sciences 576. New York Academy of Sciences, New York (1989), 500-535. Zbl 0792.05008, MR 1110850, 10.1111/j.1749-6632.1989.tb16434.x
Reference: [36] Tran, N. M.: Enumerating polytropes.J. Comb. Theory, Ser. A 151 (2017), 1-22. Zbl 06744864, MR 3663485, 10.1016/j.jcta.2017.03.011
Reference: [37] Werner, A., Yu, J.: Symmetric alcoved polytopes.Electron. J. Comb. 21 (2014), Article ID 1.20, 14 pages. Zbl 1302.52014, MR 3177515, 10.37236/3646
Reference: [38] Yu, B., Zhao, X., Zeng, L.: A congruence on the semiring of normal tropical matrices.Linear Algebra Appl. 555 (2018), 321-335. Zbl 1396.15022, MR 3834207, 10.1016/j.laa.2018.06.027
Reference: [39] Ziegler, G. M.: Lectures on Polytopes.Graduate Texts in Mathematics 152. Springer, Berlin (1995). Zbl 0823.52002, MR 1311028, 10.1007/978-1-4613-8431-1
Reference: [40] Ziegler, G. M.: Convex polytopes: Extremal constructions and $f$-vector shapes.Geometric Combinatorics IAS/Park City Mathematics Series 13. American Mathematical Society, Providence (2007). Zbl 1134.52018, MR 2383133, 10.1090/pcms/013/10
.

Files

Files Size Format View
AplMat_65-2020-6_1.pdf 439.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo