Previous |  Up |  Next

# Article

Full entry | PDF   (0.2 MB)
Keywords:
differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
Summary:
Consider the first-order linear delay (advanced) differential equation$$x'(t)+p(t)x( \tau (t)) =0\quad (x'(t)-q(t)x(\sigma (t)) =0),\quad t\geq t_{0},$$ where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau (t)$ $(\sigma (t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions$$\limsup \limits _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>1\quad \biggl (\limsup \limits _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>1\bigg )$$ and $$\liminf _{t\rightarrow \infty }\int _{\tau (t)}^{t}p(s) {\rm d}s>\frac {1}{\rm e}\quad \biggl (\liminf _{t\rightarrow \infty }\int _{t}^{\sigma (t)}q(s) {\rm d}s>\frac {1}{\rm e}\bigg )$$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
References:
[1] Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218 (2011), 3880-3887. DOI 10.1016/j.amc.2011.09.035 | MR 2851485 | Zbl 1256.39013
[2] Chatzarakis, G. E.: Differential equations with non-monotone arguments: Iterative oscillation results. J. Math. Comput. Sci. 6 (2016), 953-964.
[3] Chatzarakis, G. E.: On oscillation of differential equations with non-monotone deviating arguments. Mediterr. J. Math. 14 (2017), Paper No. 82, 17 pages. DOI 10.1007/s00009-017-0883-0 | MR 3620160 | Zbl 1369.34088
[4] Chatzarakis, G. E., Jadlovská, I.: Improved iterative oscillation tests for first-order deviating differential equations. Opusc. Math. 38 (2018), 327-356. DOI 10.7494/OpMath.2018.38.3.327 | MR 3781617 | Zbl 1405.34056
[5] Chatzarakis, G. E., Jadlovská, I.: Oscillations in differential equations caused by non-monotone arguments. (to appear) in Nonlinear Stud. MR 4159431
[6] Chatzarakis, G. E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018 (2018), Article ID 8237634, 18 pages. DOI 10.1155/2018/8237634 | Zbl 1407.34045
[7] Chatzarakis, G. E., Ocalan, " O. ": Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. 30 (2015), 310-323. DOI 10.1080/14689367.2015.1036007 | MR 3373715 | Zbl 1330.34107
[8] El-Morshedy, H. A., Attia, E. R.: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett. 54 (2016), 54-59. DOI 10.1016/j.aml.2015.10.014 | MR 3434455 | Zbl 1331.34132
[9] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1995). MR 1309905 | Zbl 0821.34067
[10] Erbe, L. H., Zhang, B. G.: Oscillation for first order linear differential equations with deviating arguments. Differ. Integral Equ. 1 (1988), 305-314. MR 929918 | Zbl 0723.34055
[11] Fukagai, N., Kusano, T.: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl., IV. Ser. 136 (1984), 95-117. DOI 10.1007/BF01773379 | MR 765918 | Zbl 0552.34062
[12] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. With Applications. Clarendon Press, Oxford (1991). MR 1168471 | Zbl 0780.34048
[13] Koplatadze, R. G., Chanturiya, T. A.: Oscillating and monotone solutions of first order differential equations with deviating argument. Differ. Uravn. 18 (1982), 1463-1465 Russian. MR 0671174 | Zbl 0496.34044
[14] Koplatadze, R. G., Kvinikadze, G.: On the oscillation of solutions of first-order delay differential inequalities and equations. Georgian Math. J. 1 (1994), 675-685. DOI 10.1007/BF02254685 | MR 1296574 | Zbl 0810.34068
[15] Kwong, M. K.: Oscillation of first-order delay equations. J. Math. Anal. Appl. 156 (1991), 274-286. DOI 10.1016/0022-247X(91)90396-H | MR 1102611 | Zbl 0727.34064
[16] Ladas, G., Lakshmikantham, V., Papadakis, J. S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. Delay and Functional Differential Equations and Their Applications Academic Press, New York (1972), 219-231 K. Schmitt. DOI 10.1016/B978-0-12-627250-5.50013-7 | MR 0387776 | Zbl 0273.34052
[17] Ladde, G. S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 63 (1977), 351-359. MR 0548601 | Zbl 0402.34058
[18] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). MR 1017244 | Zbl 0832.34071
[19] Li, X., Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl. 269 (2002), 462-488. DOI 10.1016/S0022-247X(02)00029-X | MR 1907126 | Zbl 1013.34067
[20] Myshkis, A. D.: Linear homogeneous differential equations of the first order with deviating arguments. Usp. Mat. Nauk 5 (1950), 160-162 Russian. MR 0036423 | Zbl 0041.42108
[21] Yu, J. S., Wang, Z. C., Zhang, B. G., Qian, X. Z.: Oscillations of differential equations with deviating arguments. Panam. Math. J. 2 (1992), 59-78. MR 1160129 | Zbl 0845.34082
[22] Zhang, B. G.: Oscillation of solutions of the first-order advanced type differential equations. Sci. Exploration 2 (1982), 79-82. MR 713776
[23] Zhou, D.: On some problems on oscillation of functional differential equations of first order. J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434-442. Zbl 0726.34060

Partner of