Previous |  Up |  Next

Article

Title: Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients (English)
Author: Zhang, Yu
Author: Bi, Hai
Author: Yang, Yidu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 1-19
Summary lang: English
.
Category: math
.
Summary: In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on $d$-dimensional domains ($d=2, 3$). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results. (English)
Keyword: correction
Keyword: Steklov eigenvalue problem
Keyword: Crouzeix-Raviart finite element
Keyword: asymptotic lower bounds
Keyword: convergence order
MSC: 65N25
MSC: 65N30
idZBL: 07332686
idMR: MR4218599
DOI: 10.21136/AM.2020.0108-19
.
Date available: 2021-01-28T09:57:22Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148505
.
Reference: [1] Alonso, A., Russo, A. Dello: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods.J. Comput. Appl. Math. 223 (2009), 177-197. Zbl 1156.65094, MR 2463110, 10.1016/j.cam.2008.01.008
Reference: [2] Armentano, M. G., Durán, R. G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods.ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. Zbl 1065.65127, MR 2040799
Reference: [3] Babuška, I., Osborn, J.: Eigenvalue problems.Finite Element Methods (Part 1) Handbook of Numererical Analysis II. North-Holland, Amsterdam (1991), 641-787. Zbl 0875.65087, MR 1115240
Reference: [4] Boffi, D.: Finite element approximation of eigenvalue problems.Acta Numerica 19 (2010), 1-120. Zbl 1242.65110, MR 2652780, 10.1017/S0962492910000012
Reference: [5] Bramble, J. H., Osborn, J. E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations A. K. Azis Academic Press, New York (1972), 387-408. Zbl 0264.35055, MR 0431740, 10.1016/B978-0-12-068650-6.50019-8
Reference: [6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, Berlin (2002). Zbl 1012.65115, MR 1894376, 10.1007/978-1-4757-3658-8
Reference: [7] Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation.Numer. Math. 126 (2014), 33-51. Zbl 1298.65165, MR 3149071, 10.1007/s00211-013-0559-z
Reference: [8] Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues.Math. Comput. 83 (2014), 2605-2629. Zbl 1320.65162, MR 3246802, 10.1090/S0025-5718-2014-02833-0
Reference: [9] Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.J. Comput. Math. 30 (2012), 337-353. Zbl 1274.65290, MR 2965987, 10.4208/jcm.1108-m3677
Reference: [10] Chavel, I., Feldman, E. A.: An optimal Poincaré inequality for convex domains of non-negative curvature.Arch. Ration. Mech. Anal. 65 (1977), 263-273. Zbl 0362.35059, MR 0448457, 10.1007/BF00280444
Reference: [11] Chen, L.: iFEM: an innovative finite element methods package in MATLAB.Technical Report, University of California, Irvine (2008), Available at {\def{ }\let \relax\brokenlink{https://pdfs.semantic}{scholar.org/b841/653da0c77051e91f411d4363afe3727f5cc5.pdf}}.
Reference: [12] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-75. Zbl 0302.65087, MR 0343661, 10.1051/m2an/197307R300331
Reference: [13] Russo, A. Dello, Alonso, A. E.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems.Comput. Math. Appl. 62 (2011), 4100-4117. Zbl 1236.65142, MR 2859966, 10.1016/j.camwa.2011.09.061
Reference: [14] Garau, E. M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems.IMA J. Numer. Anal. 31 (2011), 914-946. Zbl 1225.65107, MR 2832785, 10.1093/imanum/drp055
Reference: [15] Hu, J., Huang, Y.: Lower bounds for eigenvalues of the Stokes operator.Adv. Appl. Math. Mech. 5 (2013), 1-18. Zbl 1262.65171, MR 3021142, 10.4208/aamm.11-m11103
Reference: [16] Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods.J. Sci. Comput. 61 (2014), 196-221. Zbl 1335.65089, MR 3254372, 10.1007/s10915-014-9821-5
Reference: [17] Hu, J., Huang, Y., Ma, R.: Guaranteed lower bounds for eigenvalues of elliptic operators.J. Sci. Comput. 67 (2016), 1181-1197. Zbl 1343.65131, MR 3493499, 10.1007/s10915-015-0126-0
Reference: [18] Li, Y.: Lower approximation of eigenvalues by the nonconforming finite element method.Math. Numer. Sin. 30 (2008), 195-200 Chinese. Zbl 1174.65514, MR 2437993
Reference: [19] Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations.Appl. Math., Praha 58 (2013), 129-151. Zbl 1274.65296, MR 3034819, 10.1007/s10492-013-0007-5
Reference: [20] Li, Q., Liu, X.: Explicit finite element error estimates for nonhomogeneous Neumann problems.Appl. Math., Praha 63 (2018), 367-379. Zbl 06945737, MR 3833665, 10.21136/AM.2018.0095-18
Reference: [21] Lin, Q., Huang, H.-T., Li, Z.-C.: New expansions of numerical eigenvalues for $-\Delta u=\lambda\rho u$ by nonconforming elements.Math. Comput. 77 (2008), 2061-2084. Zbl 1198.65228, MR 2429874, 10.1090/S0025-5718-08-02098-X
Reference: [22] Lin, Q., Xie, H.: Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods.Inverse Probl. Imaging 7 (2013), 795-811. Zbl 1273.65178, MR 3105355, 10.3934/ipi.2013.7.795
Reference: [23] Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods.Math. Pract. Theory 40 (2010), 157-168. MR 2768711
Reference: [24] Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators.Appl. Math. Comput. 267 (2015), 341-355. Zbl 1410.35088, MR 3399052, 10.1016/j.amc.2015.03.048
Reference: [25] Luo, F., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods.Sci. China, Math. 55 (2012), 1069-1082. Zbl 1261.65112, MR 2912496, 10.1007/s11425-012-4382-2
Reference: [26] Oden, J. T., Reddy, J. N.: An Introduction to the Mathematical Theory of Finite Elements.Pure and Applied Mathematics. Wiley-Interscience, New York (1976). Zbl 0336.35001, MR 0461950
Reference: [27] Savaré, G.: Regularity results for elliptic equations in Lipschitz domains.J. Funct. Anal. 152 (1998), 176-201. Zbl 0889.35018, MR 1600081, 10.1006/jfan.1997.3158
Reference: [28] Šebestová, I., Vejchodský, T.: Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants.SIAM J. Numer. Anal. 52 (2014), 308-329. Zbl 1287.35050, MR 3163245, 10.1137/13091467X
Reference: [29] Xie, M., Xie, H., Liu, X.: Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements.Japan J. Ind. Appl. Math. 35 (2018), 335-354. Zbl 06859028, MR 3768250, 10.1007/s13160-017-0291-7
Reference: [30] Yang, Y., Han, J., Bi, H., Yu, Y.: The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes.J. Sci. Comput. 62 (2015), 284-299. Zbl 1320.65163, MR 3295037, 10.1007/s10915-014-9855-8
Reference: [31] Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem.Appl. Numer. Math. 59 (2009), 2388-2401. Zbl 1190.65168, MR 2553141, 10.1016/j.apnum.2009.04.005
Reference: [32] Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements.Adv. Comput. Math. 36 (2012), 443-450. Zbl 1253.65181, MR 2893474, 10.1007/s10444-011-9185-4
Reference: [33] Yang, Y., Zhang, Y., Bi, H.: A type of adaptive $C^0$ non-conforming finite element method for the Helmholtz transmission eigenvalue problem.Comput. Methods Appl. Mech. Eng. 360 (2020), Article ID 112697, 20 pages. Zbl 07194504, MR 4049892, 10.1016/j.cma.2019.112697
Reference: [34] Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements.Sci. China, Math. 53 (2010), 137-150. Zbl 1187.65125, MR 2594754, 10.1007/s11425-009-0198-0
Reference: [35] You, C., Xie, H., Liu, X.: Guaranteed eigenvalue bounds for the Steklov eigenvalue problem.SIAM J. Numer. Anal. 57 (2019), 1395-1410. Zbl 1427.65384, MR 3961991, 10.1137/18M1189592
Reference: [36] Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson's element.Math. Numer. Sin. 29 (2007), 319-321 Chinese. Zbl 1142.65435, MR 2370469
.

Files

Files Size Format View
AplMat_66-2021-1_1.pdf 640.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo