Title:
|
A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three (English) |
Author:
|
Li, Huanyuan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
66 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
43-55 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper proves a Serrin's type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\|\nabla \rho \|_{L^{\infty }(0,T; W^{1,q})} + \| u\|_{L^s(0,T; L^r_{\omega })}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space. (English) |
Keyword:
|
Navier-Stokes-Korteweg equations |
Keyword:
|
capillary fluid |
Keyword:
|
blow-up criterion |
Keyword:
|
vacuum |
Keyword:
|
strong solutions |
MSC:
|
35D35 |
MSC:
|
35Q35 |
MSC:
|
76D45 |
idZBL:
|
07332688 |
idMR:
|
MR4218601 |
DOI:
|
10.21136/AM.2020.0228-19 |
. |
Date available:
|
2021-01-28T09:58:16Z |
Last updated:
|
2023-03-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148509 |
. |
Reference:
|
[1] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations.J. Math. Fluid Mech. 16 (2014), 721-725. Zbl 1307.35186, MR 3267544, 10.1007/s00021-014-0182-5 |
Reference:
|
[2] Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 59 (2004), 465-489. Zbl 1066.35070, MR 2094425, 10.1016/j.na.2004.07.020 |
Reference:
|
[3] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249, Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8 |
Reference:
|
[4] Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system.J. Differ. Equations 254 (2013), 511-527. Zbl 1253.35121, MR 2990041, 10.1016/j.jde.2012.08.029 |
Reference:
|
[5] Huang, X., Wang, Y.: Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system.SIAM J. Math. Anal. 46 (2014), 1771-1788. Zbl 1302.35294, MR 3200422, 10.1137/120894865 |
Reference:
|
[6] Huang, X., Wang, Y.: Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity.J. Differ. Equations 259 (2015), 1606-1627. Zbl 1318.35064, MR 3345862, 10.1016/j.jde.2015.03.008 |
Reference:
|
[7] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/S0036141004442197 |
Reference:
|
[8] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023 |
Reference:
|
[9] Li, H.: A blow-up criterion for the density-dependent Navier-Stokes-Korteweg equations in dimension two.Acta Appl. Math. 166 (2020), 73-83. Zbl 07181473, MR 4077229, 10.1007/s10440-019-00255-3 |
Reference:
|
[10] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). Zbl 0983.35004, MR 3013225, 10.1007/978-3-0348-0551-3 |
Reference:
|
[11] Tan, Z., Wang, Y.: Strong solutions for the incompressible fluid models of Korteweg type.Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 799-809. Zbl 1228.76038, MR 2675787, 10.1016/S0252-9602(10)60079-3 |
Reference:
|
[12] Wang, T.: Unique solvability for the density-dependent incompressible Navier-Stokes-Korteweg system.J. Math. Anal. Appl. 455 (2017), 606-618. Zbl 1373.35257, MR 3665121, 10.1016/j.jmaa.2017.05.074 |
Reference:
|
[13] Xu, X., Zhang, J.: A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum.Math. Models Methods Appl. Sci. 22 (2012), Article ID 1150010, 23 pages. Zbl 1388.76452, MR 2887666, 10.1142/S0218202511500102 |
. |