Previous |  Up |  Next

Article

Title: Incompressible limit of a fluid-particle interaction model (English)
Author: Wang, Hongli
Author: Yang, Jianwei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 69-86
Summary lang: English
.
Category: math
.
Summary: The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained. (English)
Keyword: incompressible limit
Keyword: relative entropy method
Keyword: fluid-particle interaction model
Keyword: incompressible Navier-Stokes equation
MSC: 35B25
MSC: 35G25
MSC: 35Q35
idZBL: 07332690
idMR: MR4218603
DOI: 10.21136/AM.2020.0253-19
.
Date available: 2021-01-28T09:59:19Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148511
.
Reference: [1] Ballew, J., Trivisa, K.: Suitable weak solutions and low stratification singular limit for a fluid particle interaction model.Q. Appl. Math. 70 (2012), 469-494. Zbl 1418.76045, MR 2986131, 10.1090/S0033-569X-2012-01310-2
Reference: [2] Ballew, J., Trivisa, K.: Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system.Nonlinear Anal., Theory Methods Appl., Ser. A 91 (2013), 1-19. Zbl 1284.35303, MR 3081207, 10.1016/j.na.2013.06.002
Reference: [3] Baranger, C., Boudin, L., Jabin, P.-E., Mancini, S.: A modeling of biospray for the upper airways.ESAIM, Proc. 14 (2005), 41-47. Zbl 1075.92031, MR 2226800, 10.1051/proc:2005004
Reference: [4] Veiga, H. Beirão da: Singular limits in compressible fluid dynamics.Arch. Ration. Mech. Anal. 128 (1994), 313-327. Zbl 0829.76073, MR 1308856, 10.1007/BF00387711
Reference: [5] Berres, S., Bürger, R., Karlsen, K. H., Tory, E. M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression.SIAM J. Appl. Math. 64 (2003), 41-80. Zbl 1047.35071, MR 2029124, 10.1137/S0036139902408163
Reference: [6] Carrillo, J. A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model.Commun. Partial Differ. Equations 31 (2006), 1349-1379. Zbl 1105.35088, MR 2254618, 10.1080/03605300500394389
Reference: [7] Carrillo, J. A., Karper, T., Trivisa, K.: On the dynamics of a fluid-particle interaction model: The bubbling regime.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2778-2801. Zbl 1214.35068, MR 2776527, 10.1016/j.na.2010.12.031
Reference: [8] Chemin, J.-Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids.SIAM J. Math. Anal. 33 (2001), 84-112. Zbl 1007.76003, MR 1857990, 10.1137/S0036141099359317
Reference: [9] Chen, Y., Ding, S., Wang, W.: Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations.Discrete Contin. Dyn. Syst. 36 (2016), 5287-5307. Zbl 1353.35222, MR 3543548, 10.3934/dcds.2016032
Reference: [10] Chen, Z.-M., Zhai, X.: Global large solutions and incompressible limit for the compressible Navier-Stokes equations.J. Math. Fluid Mech. 21 (2019), Article ID 26, 23 pages. Zbl 1416.35181, MR 3935027, 10.1007/s00021-019-0428-3
Reference: [11] Constantin, P., Masmoudi, N.: Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D.Commun. Math. Phys. 278 (2008), 179-191. Zbl 1147.35069, MR 2367203, 10.1007/s00220-007-0384-2
Reference: [12] Danchin, R., Mucha, P. B.: Compressible Navier-Stokes system: Large solutions and incompressible limit.Adv. Math. 320 (2017), 904-925. Zbl 1384.35058, MR 3709125, 10.1016/j.aim.2017.09.025
Reference: [13] Donatelli, D., Feireisl, E., Novotný, A.: On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions.Discrete Contin. Dyn. Syst., Ser. B 13 (2010), 783-798. Zbl 1194.35304, MR 2601340, 10.3934/dcdsb.2010.13.783
Reference: [14] Evje, S., Wen, H., Zhu, C.: On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow.Math. Models Methods Appl. Sci. 27 (2017), 323-346. Zbl 1359.76291, MR 3606958, 10.1142/S0218202517500038
Reference: [15] Feireisl, E., Petcu, M.: Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations.J. Differ. Equation 267 (2019), 1836-1858. Zbl 1416.35204, MR 3945619, 10.1016/j.jde.2019.03.006
Reference: [16] Hsiao, L., Ju, Q., Li, F.: The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data.Chin. Ann. Math., Ser. B 30 (2009), 17-26. Zbl 1181.35171, MR 2480811, 10.1007/s11401-008-0039-4
Reference: [17] Huang, B., Huang, J., Wen, H.: Low Mach number limit of the compressible Navier-StokesSmoluchowski equations in multi-dimensions.J. Math. Phys. 60 (2019), Article ID 061501, 20 pages. Zbl 07082295, MR 3963486, 10.1063/1.5089229
Reference: [18] Huang, F., Wang, D., Yuan, D.: Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow.Discrete Contin. Dyn. Syst. 39 (2019), 3535-3575. Zbl 1415.76638, MR 3959440, 10.3934/dcds.2019146
Reference: [19] Klainerman, S., Majda, A.: Compressible and incompressible fluids.Commun. Pure Appl. Math. 35 (1982), 629-651. Zbl 0478.76091, MR 0668409, 10.1002/cpa.3160350503
Reference: [20] Lin, C.-K.: On the incompressible limit of the compressible Navier-Stokes equations.Commun. Partial Differ. Equations 20 (1995), 677-707. Zbl 0816.35105, MR 1318085, 10.1080/03605309508821108
Reference: [21] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models.Oxford Lecture Series in Mathematics and Its Applications 10. Clarendon Press, Oxford (1998). Zbl 0908.76004, MR 1637634
Reference: [22] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid.J. Math. Pures Appl., IX. Sér 77 (1998), 585-627. Zbl 0909.35101, MR 1628173, 10.1016/S0021-7824(98)80139-6
Reference: [23] Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier-Stokes system.Ann. Inst. Henri Poincaré, Anal. Non linéaire 18 (2001), 199-224. Zbl 0991.35058, MR 1808029, 10.1016/S0021-7824(98)80139-6
Reference: [24] Ou, Y.: Incompressible limits of the Navier-Stokes equations for all time.J. Differ. Equations 247 (2009), 3295-3314. Zbl 1181.35177, MR 2571578, 10.1016/j.jde.2009.05.009
Reference: [25] Vauchelet, N., Zatorska, E.: Incompressible limit of the Navier-Stokes model with a growth term.Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 34-59. Zbl 1370.35234, MR 3695967, 10.1016/j.na.2017.07.003
Reference: [26] Vinkovic, I., Aguirre, C., Simoëns, S., Gorokhovski, M.: Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow.Int. J. Multiphase Flow 32 (2006), 344-364. Zbl 1135.76570, 10.1016/j.ijmultiphaseflow.2005.10.005
Reference: [27] Williams, F. A.: Spray combustion and atomization.Phys. Fluids 1 (1958), 541-545. Zbl 0086.41102, 10.1063/1.1724379
Reference: [28] Williams, F. A.: Combustion Theory.CRC Press, Boca Raton (1985). 10.1201/9780429494055
.

Files

Files Size Format View
AplMat_66-2021-1_5.pdf 329.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo