Previous |  Up |  Next

Article

Title: The generalized finite volume SUSHI scheme for the discretization of the peaceman model (English)
Author: Mandari, Mohamed
Author: Rhoudaf, Mohamed
Author: Soualhi, Ouafa
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 115-143
Summary lang: English
.
Category: math
.
Summary: We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments. (English)
Keyword: porous medium
Keyword: nonconforming grid
Keyword: finite volume scheme
Keyword: a priori estimate
Keyword: miscible fluid flow
MSC: 65M08
MSC: 65N30
MSC: 76M10
MSC: 76M12
MSC: 76R99
MSC: 76S05
idZBL: 07332692
idMR: MR4218605
DOI: 10.21136/AM.2020.0122-19
.
Date available: 2021-01-28T10:00:31Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148513
.
Reference: [1] Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity.SIAM J. Numer. Anal. 47 (2009), 3720-3743. Zbl 1410.76154, MR 2576518, 10.1137/070712079
Reference: [2] Becker, J., Grün, G., Lenz, M., Rumpf, M.: Numerical methods for fourth order nonlinear degenerate diffusion problems.Appl. Math., Praha 47 (2002), 517-543. Zbl 1090.35086, MR 1948194, 10.1023/B:APOM.0000034537.55985.44
Reference: [3] Bradji, A., Fuhrmann, J.: Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes.Appl. Math., Praha 58 (2013), 1-38. Zbl 1274.65251, MR 3022767, 10.1007/s10492-013-0001-y
Reference: [4] Brenner, K., Hilhorst, D., Vu-Do, H.-C.: The generalized finite volume SUSHI scheme for the discretization of Richards equation.Vietnam J. Math. 44 (2016), 557-586. Zbl 1348.35093, MR 3541150, 10.1007/s10013-015-0170-y
Reference: [5] Chainais-Hillairet, C., Droniou, J.: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media.SIAM J. Numer. Anal. 45 (2007), 2228-2258. Zbl 1146.76034, MR 2346377, 10.1137/060657236
Reference: [6] Chainais-Hillairet, C., Krell, S., Mouton, A.: Study of discrete duality finite volume schemes for the Peaceman model.SIAM J. Sci. Comput. 35 (2013), A2928--A2952. Zbl 1292.76044, MR 3141755, 10.1137/130910555
Reference: [7] Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media.Numer. Methods Partial Differ. Equations 31 (2015), 723-760. Zbl 1325.76128, MR 3332290, 10.1002/num.21913
Reference: [8] J. Douglas, Jr.: The numerical simulation of miscible displacement in porous media.Computational Methods in Nonlinear Mechanics North-Holland, Amsterdam (1980), 225-237. Zbl 0439.76087, MR 0576907
Reference: [9] J. Douglas, Jr.: Numerical methods for the flow of miscible fluids in porous media.Numerical Methods in Coupled Systems Wiley Series in Numerical Methods in Engineering. Wiley, Chichester (1984), 405-439. Zbl 0585.76138
Reference: [10] J. Douglas, Jr., R. E. Ewing, M. F. Wheeler: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media.RAIRO, Anal. Numér. 17 (1983), 249-265. Zbl 0526.76094, MR 0702137, 10.1051/m2an/1983170302491
Reference: [11] J. Douglas, Jr., R. E. Ewing, M. F. Wheeler: The approximation of the pressure by a mixed method in the simulation of miscible displacement.RAIRO, Anal. Numér. 17 (1983), 17-33. Zbl 0516.76094, MR 0695450, 10.1051/m2an/1983170100171
Reference: [12] J. Douglas, Jr., J. E. Roberts: Numerical methods for a model for compressible miscible displacement in porous media.Math. Comput. 41 (1983), 441-459. Zbl 0537.76062, MR 0717695, 10.2307/2007685
Reference: [13] Ewing, R. E., Russell, T. F., Wheeler, M. F.: Simulation of miscible displacement using mixed methods and a modified method of characteristics.SPE Reservoir Simulation Symposium Society of Petroleum Engineers, San Francisco (1983), ID SPE-12241-MS. MR 0770577, 10.2118/12241-MS
Reference: [14] Ewing, R. E., Russell, T. F., Wheeler, M. F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics.Comput. Methods Appl. Mech. Eng. 47 (1984), 73-92 (1984). Zbl 0545.76131, MR 0777394, 10.1016/0045-7825(84)90048-3
Reference: [15] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods.Handbook of Numerical Analysis, Volume 7 P. Ciarlet et al. North-Holland/ Elsevier, Amsterdam (2000), 713-1020. Zbl 0981.65095, MR 1804748, 10.1016/S1570-8659(00)07005-8
Reference: [16] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces.IMA J. Numer. Anal. 30 (2010), 1009-1043. Zbl 1202.65144, MR 2727814, 10.1093/imanum/drn084
Reference: [17] Eymard, R., Handlovičová, A., Herbin, R., Mikula, K., Stašová, O.: Applications of approximate gradient schemes for nonlinear parabolic equations.Appl. Math., Praha 60 (2015), 135-156. Zbl 1340.65187, MR 3320342, 10.1007/s10492-015-0088-4
Reference: [18] Feng, X.: On existence and uniqueness results for a coupled systems modeling miscible displacement in porous media.J. Math. Anal. Appl. 194 (1995), 883-910. Zbl 0856.35030, MR 1350201, 10.1006/jmaa.1995.1334
Reference: [19] Jaffre, J., Roberts, J. E.: Upstream weighting and mixed finite elements in the simulation of miscible displacements.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 443-460. Zbl 0568.76096, MR 0807326, 10.1051/m2an/1985190304431
Reference: [20] Russell, T. F.: Finite elements with characteristics for two-component incompressible miscible displacement.SPE Reservoir Simulation Symposium Society of Petroleum Engineers, New Orleans (1982), ID SPE-10500-MS. 10.2118/10500-MS
Reference: [21] Sammon, P. H.: Numerical approximations for a miscible displacement process in porous media.SIAM J. Numer. Anal. 23 (1986), 508-542. Zbl 0608.76084, MR 0842642, 10.1137/0723034
Reference: [22] Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods.SIAM J. Sci. Comput. 22 (2000), 561-581. Zbl 0988.76054, MR 1780614, 10.1137/S1064827598349215
Reference: [23] Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G.: An improved numerical simulator for different types of flows in porous media.Numer. Methods Partial Differ. Equations 19 (2003), 343-362. Zbl 1079.76044, MR 1969198, 10.1002/num.10045
.

Files

Files Size Format View
AplMat_66-2021-1_7.pdf 955.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo