| Title:
             | 
Spectral sequences for commutative Lie algebras (English) | 
| Author:
             | 
Wagemann, Friedrich | 
| Language:
             | 
English | 
| Journal:
             | 
Communications in Mathematics | 
| ISSN:
             | 
1804-1388 (print) | 
| ISSN:
             | 
2336-1298 (online) | 
| Volume:
             | 
28 | 
| Issue:
             | 
2 | 
| Year:
             | 
2020 | 
| Pages:
             | 
123-137 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations. (English) | 
| Keyword:
             | 
Leibniz cohomology | 
| Keyword:
             | 
Chevalley-Eilenberg cohomology | 
| Keyword:
             | 
spectral sequence | 
| Keyword:
             | 
commutative Lie algebra | 
| Keyword:
             | 
commutative cohomology | 
| MSC:
             | 
17A30 | 
| MSC:
             | 
17A32 | 
| MSC:
             | 
17B50 | 
| MSC:
             | 
17B55 | 
| MSC:
             | 
17B56 | 
| idZBL:
             | 
Zbl 07300185 | 
| idMR:
             | 
MR4162925 | 
| . | 
| Date available:
             | 
2021-03-03T08:42:53Z | 
| Last updated:
             | 
2021-03-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/148698 | 
| . | 
| Reference:
             | 
[1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix.SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63,  MR 2529187 | 
| Reference:
             | 
[2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology.arXiv:1902.06128, 2019, 1-30,  MR 4187237 | 
| Reference:
             | 
[3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras.Annals of Mathematics, 1953, 591-603, JSTOR,  Zbl 0053.01402, MR 0054581, 10.2307/1969740 | 
| Reference:
             | 
[4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz.L'Enseignement Mathématique, 39, 2, 1993, 269-293,  MR 1252069 | 
| Reference:
             | 
[5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag,  MR 1213376, 10.1007/BF01445099 | 
| Reference:
             | 
[6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$.Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467.  10.1142/S0219199720500467 | 
| Reference:
             | 
[7] Pirashvili, T.: On Leibniz homology.Annales de l'institut Fourier, 44, 2, 1994, 401-411,  MR 1296737, 10.5802/aif.1403 | 
| Reference:
             | 
[8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition.1, 2017, De Gruyter Expositions in Mathematics,  MR 3642321 | 
| Reference:
             | 
[9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition.42, 2017, De Gruyter Expositions in Mathematics,  MR 3642323 | 
| Reference:
             | 
[10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification.42, 2017, De Gruyter Expositions in Mathematics,  MR 3642323 | 
| Reference:
             | 
[11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$.Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences,  MR 0306282 | 
| . |