Title:
|
Spectral sequences for commutative Lie algebras (English) |
Author:
|
Wagemann, Friedrich |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
28 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
123-137 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations. (English) |
Keyword:
|
Leibniz cohomology |
Keyword:
|
Chevalley-Eilenberg cohomology |
Keyword:
|
spectral sequence |
Keyword:
|
commutative Lie algebra |
Keyword:
|
commutative cohomology |
MSC:
|
17A30 |
MSC:
|
17A32 |
MSC:
|
17B50 |
MSC:
|
17B55 |
MSC:
|
17B56 |
idZBL:
|
Zbl 07300185 |
idMR:
|
MR4162925 |
. |
Date available:
|
2021-03-03T08:42:53Z |
Last updated:
|
2021-03-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148698 |
. |
Reference:
|
[1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix.SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63, MR 2529187 |
Reference:
|
[2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology.arXiv:1902.06128, 2019, 1-30, MR 4187237 |
Reference:
|
[3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras.Annals of Mathematics, 1953, 591-603, JSTOR, Zbl 0053.01402, MR 0054581, 10.2307/1969740 |
Reference:
|
[4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz.L'Enseignement Mathématique, 39, 2, 1993, 269-293, MR 1252069 |
Reference:
|
[5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, MR 1213376, 10.1007/BF01445099 |
Reference:
|
[6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$.Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467. 10.1142/S0219199720500467 |
Reference:
|
[7] Pirashvili, T.: On Leibniz homology.Annales de l'institut Fourier, 44, 2, 1994, 401-411, MR 1296737, 10.5802/aif.1403 |
Reference:
|
[8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition.1, 2017, De Gruyter Expositions in Mathematics, MR 3642321 |
Reference:
|
[9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition.42, 2017, De Gruyter Expositions in Mathematics, MR 3642323 |
Reference:
|
[10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification.42, 2017, De Gruyter Expositions in Mathematics, MR 3642323 |
Reference:
|
[11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$.Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences, MR 0306282 |
. |