Previous |  Up |  Next

Article

Keywords:
Reductive homogeneous space; invariant affine connection; Lie-Yamaguti algebra
Summary:
The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu \cite {Nom54} that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.
References:
[1] Alekseevskiĭ, D.V., Gamkrelidze, R.V., Lychagin, V.V., Vinogradov, A.M.: Geometry I: Basic ideas and concepts of differential geometry. 1, 1991, Springer, Berlin, Encyclopaedia Math. Sci. 28. MR 1300019
[2] Benito, P., Draper, C., Elduque, A.: On some algebras related to simple Lie triple systems. Journal of Algebra, 219, 1, 1999, 234-254, Elsevier, DOI 10.1006/jabr.1999.7877 | MR 1707670
[3] Benito, P., Draper, C., Elduque, A.: Lie-Yamaguti algebras related to $\mathfrak {g}_{2}$. Journal of Pure and Applied Algebra, 202, 1--3, 2005, 22-54, Elsevier, DOI 10.1016/j.jpaa.2005.01.003 | MR 2163399
[4] Benito, P., Elduque, A., Martín-Herce, F.: Irreducible Lie-Yamaguti algebras. Journal of Pure and Applied Algebra, 213, 5, 2009, 795-808, Elsevier, DOI 10.1016/j.jpaa.2008.09.003 | MR 2494372
[5] Benito, P., Elduque, A., Martín-Herce, F.: Irreducible Lie-Yamaguti algebras of generic type. Journal of Pure and Applied Algebra, 215, 2, 2011, 108-130, Elsevier, DOI 10.1016/j.jpaa.2010.04.003 | MR 2720677
[6] Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics, 4, 3, 2006, 323-357, Springer, DOI 10.2478/s11533-006-0014-9 | MR 2233854
[7] Conlon, L.: Differentiable manifolds, Second edition. 2001, Birkhäuser, Boston, MA, MR 1821549
[8] Draper, C., Garvín, A., Palomo, F.J.: Invariant affine connections on odd-dimensional spheres. Annals of Global Analysis and Geometry, 49, 3, 2016, 213-251, Springer, DOI 10.1007/s10455-015-9489-6 | MR 3485984
[9] Elduque, A., Kochetov, M.: Gradings on simple Lie algebras. 189, 2013, American Mathematical Soc., MR 3087174
[10] Elduque, A., Myung, H.C.: Color algebras and affine connections on $S^6$. Journal of Algebra, 149, 1, 1992, 234-261, Academic Press, DOI 10.1016/0021-8693(92)90014-D | MR 1165209
[11] Elduque, A., Myung, H.C.: The reductive pair $(B_3,G_2)$ and affine connections on $S^7$. Journal of Pure and Applied Algebra, 86, 2, 1993, 155-171, Elsevier, DOI 10.1016/0022-4049(93)90100-8 | MR 1215643
[12] Elduque, A., Myung, H.C.: The reductive pair $(B_{4}, B_{3})$ and affine connections on $S^{15}$. Journal of Algebra, 227, 2, 2000, 504-531, Academic Press, MR 1759833
[13] Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. American Journal of Mathematics, 123, 3, 2001, 525-550, Johns Hopkins University Press, DOI 10.1353/ajm.2001.0017 | MR 1833152
[14] Kobayashi, S., Nomizu, K.: Foundations of differential geometry I. 1, 2, 1963, Interscience Publishers, New York-London, MR 0152974 | Zbl 0119.37502
[15] Kobayashi, S., Nomizu, K.: Foundations of differential geometry II. 1, 2, 1969, Interscience Publishers, New York-London-Sidney, MR 0238225
[16] Laquer, H.T.: Invariant affine connections on Lie groups. Transactions of the American Mathematical Society, 331, 2, 1992, 541-551, JSTOR, DOI 10.1090/S0002-9947-1992-1075384-4 | MR 1075384
[17] Laquer, H.T.: Invariant affine connections on symmetric spaces. Proceedings of the American Mathematical Society, 1992, 447-454, JSTOR, DOI 10.1090/S0002-9939-1992-1107273-6 | MR 1107273
[18] Medina, P.A.: Flat left-invariant connections adapted to the automorphism structure of a Lie group. Journal of Differential Geometry, 16, 3, 1981, 445-474, Lehigh University, MR 0654637
[19] Myung, H.C.: Malcev-admissible algebras. 1986, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, 64. MR 0885089
[20] Nagai, S.: The classification of naturally reductive homogeneous real hypersurfaces in complex projective space. Archiv der Mathematik, 69, 6, 1997, 523-528, Springer, DOI 10.1007/s000130050155 | MR 1480520
[21] Nomizu, K.: Invariant affine connections on homogeneous spaces. American Journal of Mathematics, 76, 1, 1954, 33-65, JSTOR, DOI 10.2307/2372398 | MR 0059050
[22] Sagle, A.A.: Jordan algebras and connections on homogeneous spaces. Transactions of the American Mathematical Society, 187, 1974, 405-427, DOI 10.1090/S0002-9947-1974-0339013-6 | MR 0339013
[23] Vinberg, E.B.: Invariant linear connections in a homogeneous space. Trudy Moskovskogo Matematicheskogo Obshchestva, 9, 1960, 191-210, Moscow Mathematical Society, MR 0176418
[24] Wang, H.C.: On invariant connections over a principal fibre bundle. Nagoya Mathematical Journal, 13, 1958, 1-19, Cambridge University Press, DOI 10.1017/S0027763000023461 | MR 0107276
[25] Warner, F.W.: Foundations of differentiable manifolds and Lie groups. 1983, Springer-Verlag, New York-Berlin, Corrected reprint of the 1971 edition. Graduate Texts in Mathematics 94. MR 0722297
[26] Yamaguti, K.: On the Lie triple system and its generalization. Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry), 21, 3, 1958, 155-160, Hiroshima University, Department of Mathematics, MR 0100047
Partner of
EuDML logo